Celsion

Research and Development R&D Day

Down Town Association New York, NY October 12, 2017

1

Michael Tardugno Chairman of the Board, President and Chief Executive Officer

R&D Day

Safe Harbor Statement

Except for historical information, the statements made in this presentation are forward-looking statements involving significant risks and uncertainties.

These risks and uncertainties, including those related to the future financial position and business strategy of the Company, are detailed in the Company's filings with the Securities and Exchange Commission.

Agenda and Speakers

ThermoDox - Targeted Chemotherapy

OPTIMA Study: Thesis and Design

Nicholas Borys, M.D., Senior Vice President and Chief Medical Officer, Celsion Corporation

Cases from The HEAT Study

Won Young Tak, M.D., Ph.D. Professor Internal Medicine, GI & Hepatology, Kyungpook National University Hospital Daegu, Republic of Korea

Clinical Experience with RFA + ThermoDox for HCC

Stephen N. Wong, M.D. Principal Investigator OPTIMA, Chinese General Hospital, Philippines

Options for Local-Ablative Treatment of Large HCC

Robert M. Eisele, M.D. Deputy Head of Department, Dept. of General, Visceral, Vascular and Pediatric Surgery, Medical Faculty University of Saarland, Homburg, Germany

Panel Discussion Q & A

Celsion

4

Agenda and Speakers

Gen-1: IL-12 DNA Immunotherapy

Science of TheraPlas and IL-12

Khursheed Anwer, Ph.D. Executive Vice President and Chief Scientific Officer, Celsion Corporation

OVATION Study: Design, Thesis and Clinical Results

Premal H. Thaker, M.D. Associate Professor in Gynecologic Oncology, Washington University School of Medicine

Translational Data & Novel Combination Immunotherapy Concepts

Richard C. Koya, M.D., Ph.D. Associate Professor of Oncology and Immunology, Director of the Vector Development & Production Facility, Associate Director of the Center for Immunotherapy, Roswell Park Cancer Institute, Center for Immunotherapy

Panel Discussion Q & A

Today's Messages

- We are developing proprietary Drug Technologies that deliver known cancer treatments better and more effectively
- The Science behind our two clinical stage Drug Candidates is sound, if not incomparable. The evidence is clear: the mechanisms have been validated on the bench and in the clinic... our drugs work
- The Clinical Data supporting our studies is without question. Challenged, tested, and peer reviewed published, our findings suggest transformational potential for patients and the medical community
- Our Research targets specific cancers of high incidence, typically in first line, where treatment options are limited. Where the potential return – in terms of health <u>and</u> wealth -- is greatest

Oncology Company

Two Clinical Stage Nanoparticle-Based Platforms

Lysolipid Thermally Sensitive Liposomes Known Chemotherapeutics

ThermoDox®

Targeted Doxorubicin Delivery

- Phase III Study Enrolling in HCC
- Phase II Study in RCW Breast Cancer

Synthetic Non-viral Vector DNA Plasmids coded for Therapeutic Proteins

GEN-1

Localized IL-12 Immunotherapy

- Neoadjuvant Study in 1st Line Ovarian
- Phase II Ready

Pipeline of Targeting Therapeutics

Capital Efficient Drug Development

	INDICATION	PRODUCT CANDIDATE	PRE-CLINICAL	PHASE 1-2	PHASE 3		
Pre-Clinical Clinical	Primary Liver Cancer	ThermoDox/OPTIMA Study			Phase III Enrolling		
	Ovarian Cancer	GEN-1/OVATION Study	Phase I Complete				
	NMI Bladder Cancer	ThermoDox	Efficacy/Safety/Toxicology Complete				
	Glioblastoma	GEN-1	Efficacy/Safety/Toxicology Complete				

Hepatocellular Carcinoma

Large and Deadly Global Cancer

- 9 5th most prevalent
 - 850,000 global incidence growing 5% annually
 - By 2030, expected to be the #3 cancer
 - China has 50% of new cases; 75% in Asia

- 4th highest mortality
 - 5-year survival rate less than 10%
 - Median survival from time of diagnosis is less than 3 years¹
 - Curative surgery in less than 20% of patients

- Local therapies include:
 - RFA, TACE and radiation
 - RFA is the dominant treatment with local recurrence rates >50% for lesions >3 cm
 - ThermoDox + RFA addresses limitations of current standard of care by "Expanding the Treatment Zone"

Addressable Market Opportunity >200K Patients

9 ¹ Journal of Hepatology 2012 vol. 56 | 908-943

Celsion

Ovarian Cancer

Global Cancer of High Unmet Need

- 8th most diagnosed cancer among women
 - 225,000 annual incidence worldwide
 - 22,280 in US and 100,000 in developed countries
 - 14,240 deaths in 2015

- 5th highest mortality among women
 - 5-year survival rate for all stages is >50%
 - Survival rate reduces dramatically if not localized cancer
 - 15% diagnosed with localized cancer, eligible for potentially curative surgery

- Local therapies for ovarian cancer
 - Ovarian cancer is not diagnosed early - spreads to regionally requiring combo regimens
 - Most common recurrence in abdomen—importance of intra-peritoneal administered therapy
 - GEN-1 administered IP;
 ideal adjuvant to SoC
 therapy

Addressable Market Opportunity >100K Patients

Celsion

Sources: Cancer Statistics, American Cancer Society; Globocan; SEER database

Nicholas Borys, M.D.

Senior Vice President and Chief Medical Officer

R&D Day

ThermoDox - Targeted Chemotherapy

Randomized Clinical Trials *

Aimed to Change the Standard of Care In HCC Management

Indication		ndomized studies	2017 UPDATE
Adjuvant	1.	Sorafenib vs. placebo	FAILED
Intermediate HCC	1.	Chemoembolization ± sorafenib	HALTED
	2.	Chemoembolization ± brivanib	FAILED
	3.	Chemoembolization ± everolimus	N/A
Advanced HCC			
First line	1.	Sorafenib ± erlotinib	FAILED
	2.	Sorafenib <i>vs</i> . brivanib	FAILED
	3.	Sorafenib <i>vs.</i> sunitinib*	FAILED
	4.	Sorafenib <i>vs.</i> linifanib**	FAILED
	5.	Sorafenib ± Yttrium-90	FAILED
	6.	Sorafenib ± doxorubicin	HALTED
Second line	1.	Brivanib vs. placebo**	FAILED
	2.	Everolimus vs. placebo	FAILED
	3.	Ramucirumab <i>vs.</i> placebo	FAILED

* Llovet JM, Ducreux M, Lencioni R, et al. J Hepatol 2012;56:908-943

12

Only 8 of 68 Indications Show Survival QOL Benefit

BMJ 2017;359:j4530 doi: 10.1136/bmj.j4530 (Published 2017 October 03)

Page 1 of 15

Celsion

RESEARCH

Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13

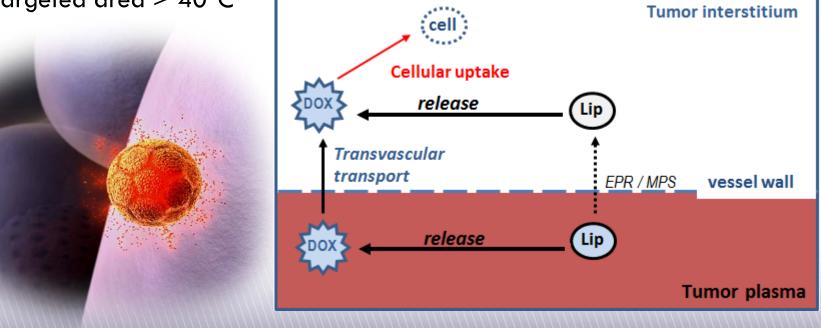
COB OPEN ACCESS

13

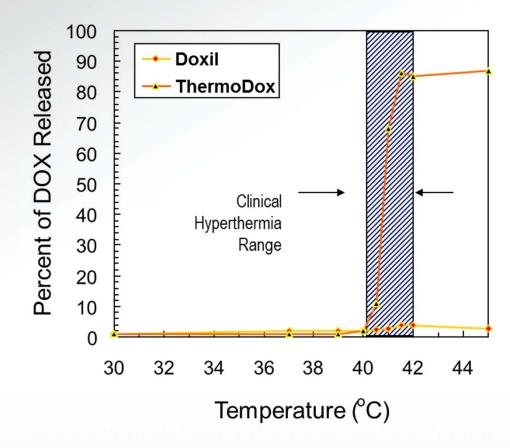
Courtney Davis *senior lecturer*¹, Huseyin Naci *assistant professor of health policy*², Evrim Gurpinar *MSc candidate in international health policy*², Elita Poplavska *assistant professor*³, Ashlyn Pinto *MSc candidate in global health*², Ajay Aggarwal *academic clinical oncologist*^{4 5}

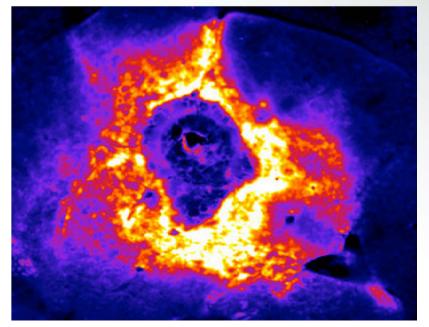
¹Department of Global Health and Social Medicine, King's College London, London WC2R 2LS, UK; ²LSE Health, Department of Health Policy, London School of Economics and Political Science, London, UK; ³Faculty of Pharmacy, Riga Stradins University, Riga, Latvia; ⁴Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK; ⁵Institute of Cancer Policy, King's College

ThermoDox + Liver Ablation


- RFA misses micro-metastases outside ablation zone
- Drug concentrates in the "Thermal Zone"
- Ablation releases doxorubicin in "Thermal Zone" expanding treatment area and destroying micrometastases

ThermoDox **Ablation Zone** Thermal Zone **RFA Electrode**


Celsion


ThermoDox's Mechanism of Action

- Nanoparticle (100nm) which rapidly concentrates in the liver (MPS; Mononuclear Phagocytic System)
- Enhanced uptake by tumor due to EPR (Enhanced Permeability & Retention property of tumors)
- Rapid Diffusion of cytotoxic doxorubicin into local tissue follows from heating targeted area > 40°C

ThermoDox Design Principles In Action

Pig liver single ablation with ThermoDox Courtesy D. Haemmerich

Celsion

Key Points

Heat activated chemotherapy (ThermoDox) can improve the outcome of RFA

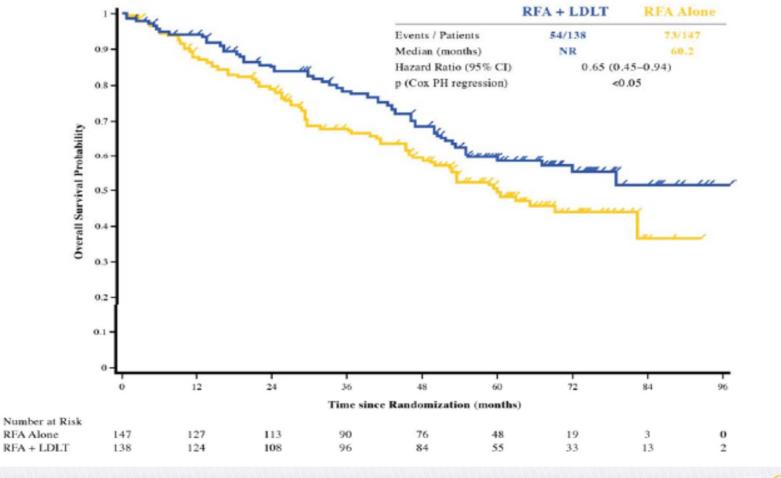
- Focuses activity of cytotoxic activity at site of high recurrence
- Combination activates immune response
- Can change standard of practice
 - Introduces a multimodality approach
 - Challenge surgery and palliative approaches

HEAT Study Manuscript

Phase III HEAT Study Adding Lyso-Thermosensitive Liposomal Doxorubicin to Radiofrequency Ablation in Patients With Unreservable H patocellular Carcinoma Lesions

Won Young Tak^{*1}, Shi-Ming Lin², Yijun Wakz¹, Jia heng Zheng⁴, Aldo Vecchione⁵, Soo Young Park¹, Min Hua Chen⁶, Stephen Wong⁷, Juocai Xu⁸, Cheng-Yuan Peng⁹, Yi-You Chiou¹⁰, Guan-Tarn Huang¹¹, Jianqiang Cai⁵, Basri Johan Jeet Abdullah¹³, June Sung Lee¹⁴, Jae Young Lee¹⁵, Jong-Young Choi¹⁶, Juneta Gopez-Cervantes¹⁷, Morris Sherman¹⁸, Richard S. Finn¹⁹, Masao Omata²⁰, Michael O'Neal²¹, Lukas Makris²², Nicholas Borys²³, Ronnie Poon²⁴, Riccardo Lencioni²⁵

¹Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
²Chang Gung Memorial Hospital – Linkou, Taoyuan, Taiwan.
³Third Central Hospital of Tianjin, Tianjin, China.


Key Points of HEAT Study Paper

- Large well controlled study in patients with intermediate size HCC (up to 4 lesions 3-7 cm)
 - Primary endpoint of PFS or OS was not met
 - Showed that RFA and adjuvant treatment is safe and feasible
 - Set a data standard: new role for RFA
- Subgroup analysis
 - Patients with solitary lesions and heated for ≥ 45 minutes showed OS benefit
 - Forms basis of OPTIMA Study

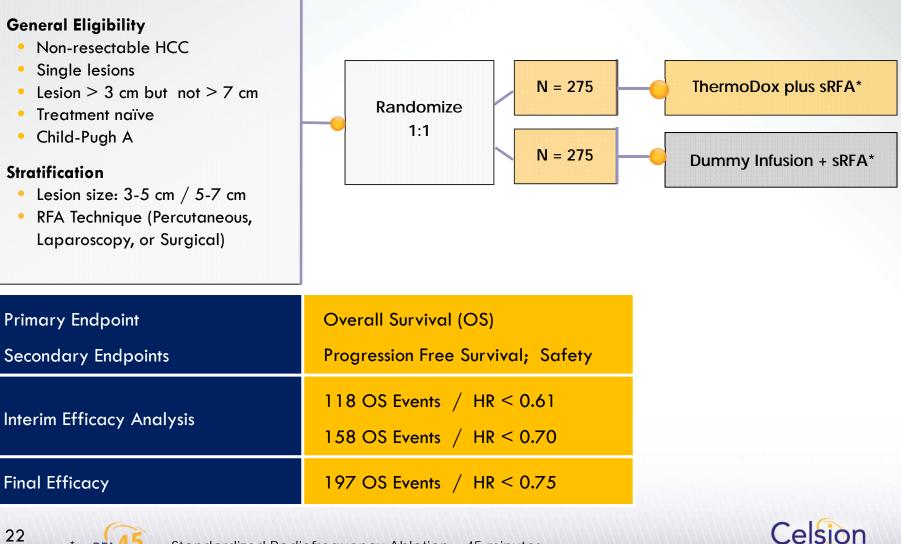
HEAT Subgroup KM

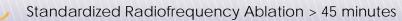
D. OS (Subset: Solitary lesion and RFA dwell time ≥45 min, n=285)

Celsion

ThermoDox + RFA vs TACE

Intermediate HCC

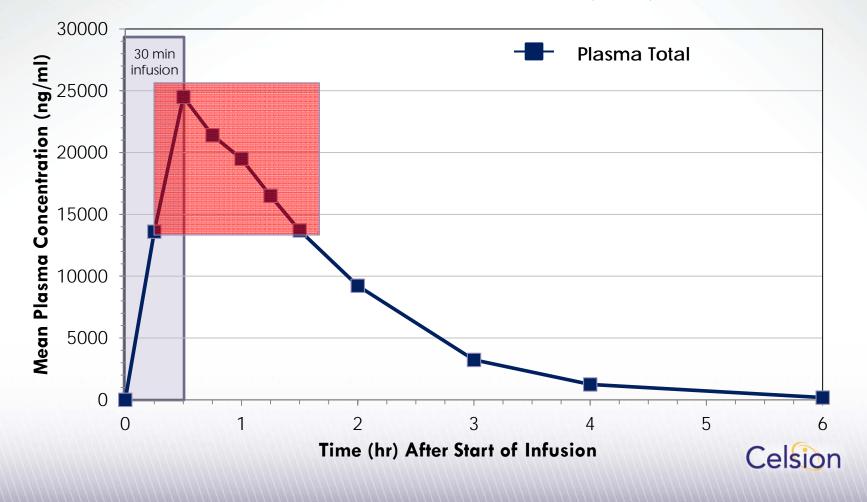

	Study	Lesion size	N	Median OS (mos.)	Year 1 (%)	Year 2 (%)	Year 3 (%)
	HEAT Study ITT Population	Overall: 2.7 - 7.5 cm Mean: 4.2 cm Median: 4 cm	701	53 mos.	85%	76%	64%
	ThermoDox + RFA ≥ 45 min.	Overall: 2.7 - 6.9 cm Mean: 4.3 cm Median: 4.2 cm	138	80+ mos.	94 %	85%	77%
	RFA alone time ≥ 45 min.	Overall: 3 - 6.9 cm Mean: 4.2 cm Median: 3.9 cm	147	57 mos.	88%	79%	69%
	lkeda et al (TACE)	Median: 3.9; range 1-11	99	37 mos.	90%	75%	NR
	2013	> 3.0	64	NR	NR	66%	NR
	Burrel (DEB TACE) 2012	BCLC A	41	54 mos.	90%	NR	68%
		BCLC B	63	48 mos.	88%	NR	64%
1							Celsion


DEB TACE – Doxorubicin Eluding Beads

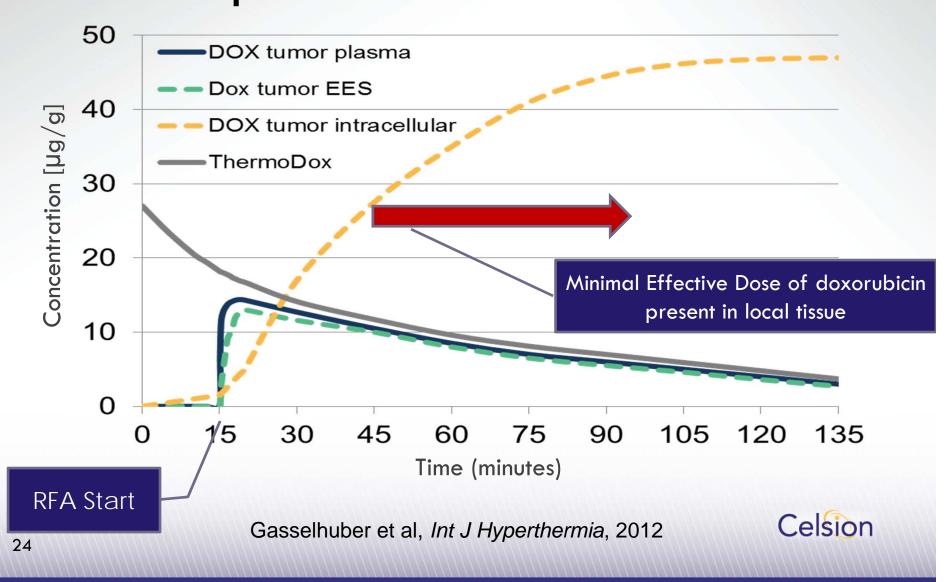
21

HEAT Study Subgroup

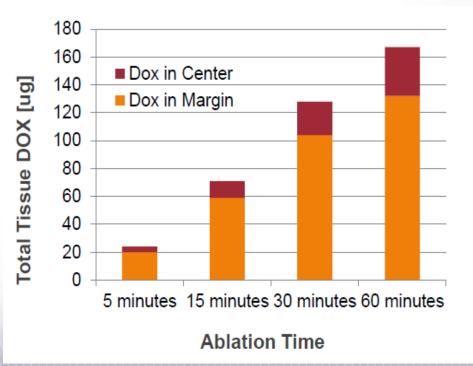
Phase III OPTIMA Study Design



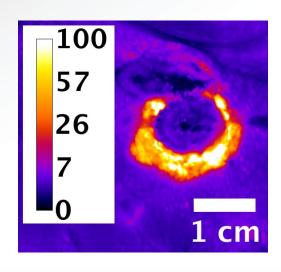
22

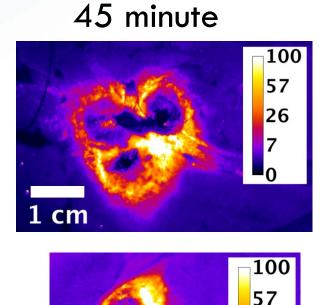

ThermoDox Human PK

Protocol 104-03-101: + Liver RFA @ 50 mg/m² Mean Plasma Concentrations (n=6)


23

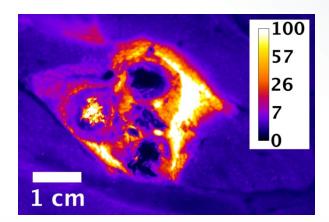
Impact of Mild Hyperthermia on Tissue Deposition


Post Hoc Analysis


- Ablation time or strategy was not mandated in HEAT Study
 - High degree of variability exists with ablation cycles (burns) and treatment time by lesion size
 - Simulation studies show that prolonged heating is required in order to achieve optimal tissue concentrations of doxorubicin

Fluorescence Mapping of Doxorubicin Distribution in pigs treated with ThermoDox

15 minute



26

7

1 cm

90 minute

Sub-Group Population Balanced for Risk Factors

Baseline Characteristics for Patients with Single HCC and RFA \geq 45 min (N=285)

Parameter	RFA + LDLT (ThermoDox) (n = 138)	RFA (n = 147)	
Male	99 (71.7%)	109 (74.1%)	
Age > 65	56 (40.6%)	53 (36.0%)	
Hepatitis B	89 (64.5%)	89 (60.5%)	
Hepatitis C	26 (18.8%)	33 (22.4%)	
Child Pugh A	138 (100%)	147 (100%)	
Max. size 3-5 cm	111 (80.4%)	122 (83.0%)	
Percutaneous route	123 (89.1%)	133 (90.5%)	
Covidien Device	77 (55.8)	82 (55.8)	

Celsion Corporation. Unpublished Data

27

Multi-Variate Analysis

- A Multi-Variate Cox regression OS Analysis investigated the effect of 8 potential prognostic factors
 - RFA Dwell Time (< 45 minutes versus \geq 45 minutes)
 - RFA Approach (Percutaneous, Laparoscopy, Open Surgical)
 - Age (< 65 years old versus > 65 years old)
 - Sex
 - Region
 - Disease Etiology (Hepatitis B versus other)
 - Number of Lesions (Solitary vs. Multiple)
 - Size of Lesions Maximum Diameter (3.0 to 5.0 cm and 5.1 to 7.0 cm)

Celsion

The effect of burn time per tumor volume on PFS and OS was analyzed using multiple covariate Cox proportional hazard model.

PURPOSE

Does thermal dose have an effect on ThermoDox outcome? Burn time per tumor volume (min/ml)

METHOD

Analyzed 437 HEAT subjects with single lesions (RFA only n=210 vs. RFA + ThermoDox n=227)

Celsion

Increase in the burn time per tumor volume improves survival in the RFA+ThermoDox subjects compared to RFA only patients.

RESULTS

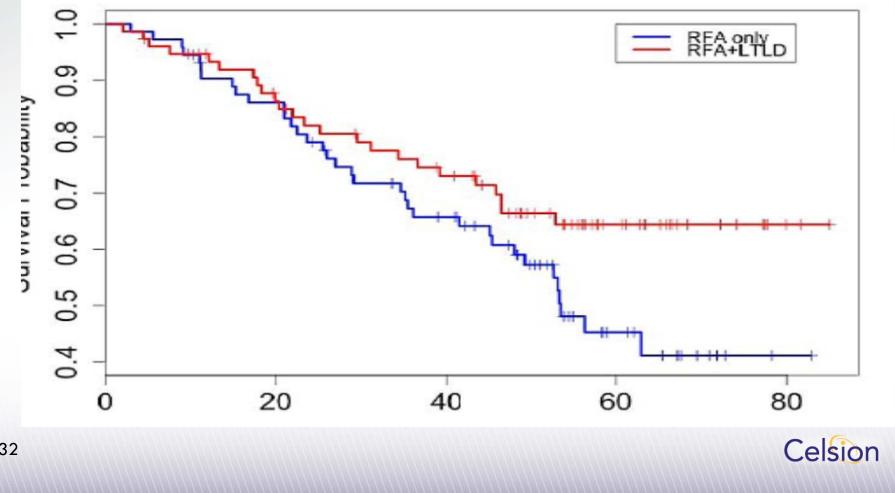
Average burn time per volume for RFA+ThermoDox patients was 22.7% <u>less</u> than RFA-only patients

Cox multiple covariate analysis showed OS to be significant (p=0.038, HR=0.85)

RESULTS (cont.)

Analysis for effects of burn time per tumor volume:

For RFA + ThermoDox subjects:


One unit increase in RFA duration per tumor volume improved OS of RFA+ThermoDox subjects by 19.6% (p=0.017, Hazard Ratio=0.836, n=227)

NOT TRUE FOR RFA-ONLY

Burn time per tumor volume did not have a significant effect (p=0.57, Hazard Ratio=0.99, n=210)

KM of Subjects with Burn Time > 2.5 min/ml

32

CONCLUSION

ThermoDox may improve overall survival as RFA duration per unit tumor volume increases

This study to be confirmed with OPTIMA

Mechanism of Thermal Dose Effect

- Heat is Tumorcidal
- Higher Local Concentrations of Doxorubicin
- Doxorubicin may increase thermal sensitivity
- Immune Effect?

RESEARCH ARTICLE

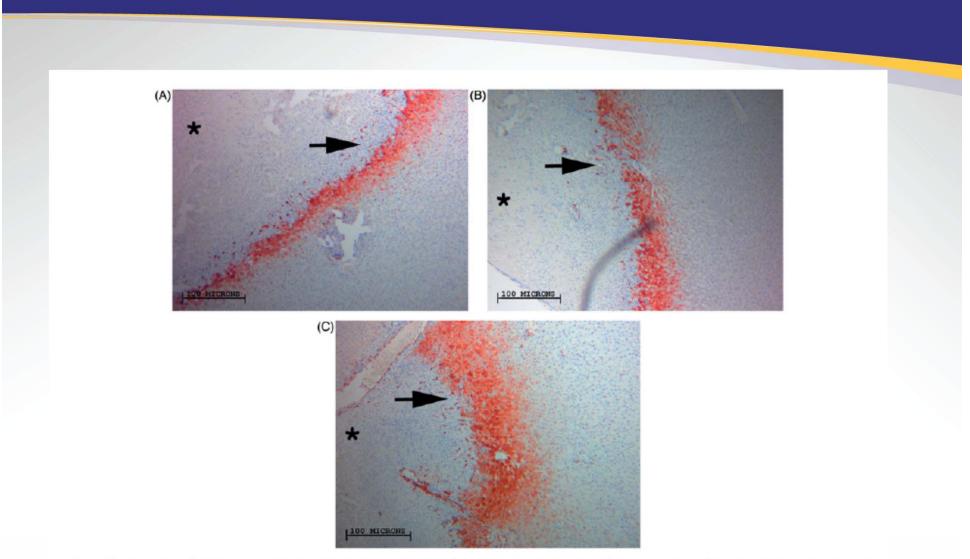
Effect of thermal dose on heat shock protein expression after radio-frequency ablation with and without adjuvant nanoparticle chemotherapies

Marwan Moussa^a, S. Nahum Goldberg^{a,b}, Gaurav Kumar^a, Tatyana Levchenko^c, Vladimir Torchilin^c and Muneeb Ahmed^a

^aLaboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA; ^bDivision of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel; ^cDepartment of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts, USA

Longer Heating Times

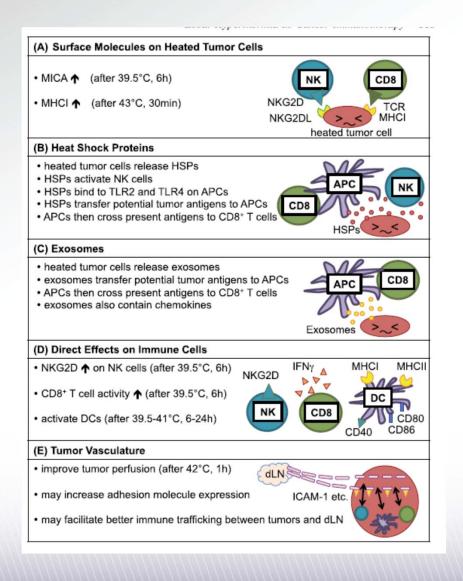
- > inflammation
- >microvascular change
- Maximizes volume of peri-ablational rim
- Therefore tailoring the ablation algorithm to increase the volume of tissue exposed to hyperthermia may be the key



RFA in Intermediate Size Tumors

Thermal Dose

- Variation in tissue heating affects ablation zone size in liver
- Represented by Hsp70 expression
 - > lower temperature longer duration vs.
 - < higher temperature shorter duration

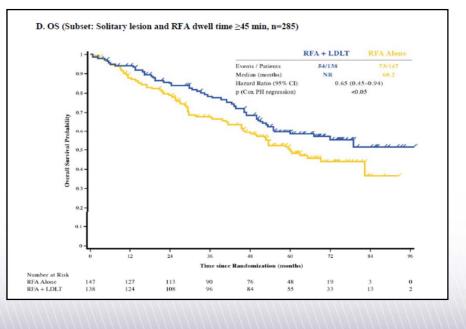

Figure 3. Comparison of RF-induced peri-ablational Hsp70 in normal rat liver for varied RF application. Magnified images (10×) of liver peri-ablational rims stained for Hsp70 expression after 2 min (A), 5 min, (B), and 10 min (C) for a standardised RF tip temperature (90 °C) demonstrates a significant increase in rim thickness when increasing duration of RF application (p < 0.003). By contrast, incremental increase of tip temperature at any constant application period did not result in significant increases in Hsp70 expression (p < 0.4).

Celsion

Findings

- Combined drug/ablation strategies can improve ablation efficacy
- For RF thermal ablation, longer heating, lower temperature protocols may permit greater zones of periablational inflammation compared to higher temperature, faster heating protocols.
- Such approaches may be tailored to maximize the peri-ablational effects of adjuvant nanodrugs...

Thermal Immune Activation



- Surface Molecule Targets
- Heat Shock Proteins
- NK cells
- Release exosomes transferring tumor antigens
- Increase in T-cell activity
- Activation of dendritic cells

Celsion

Conclusion

- Hepatocellular Carcinoma is an international unmet medical need
- Current single modality treatments are not sufficient
- ThermoDox offers multimodality approach
 - Adjunctive targeted concentrated cytotoxic
 - Immune response
 - Survival Benefit

Celsion

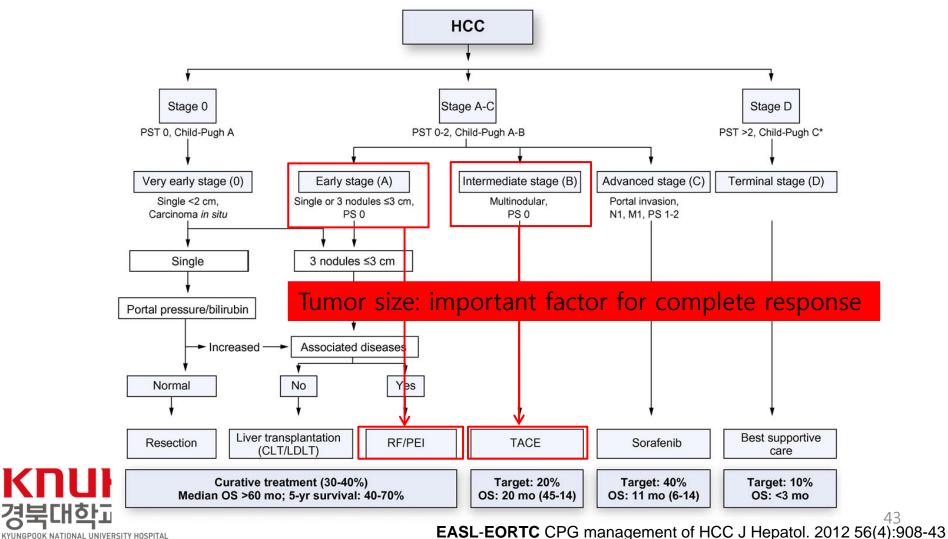
Won Young Tak, M.D., Ph.D.

Professor Internal Medicine, GI & Hepatology, Kyungpook National University Hospital, Daegu, Republic of Korea

R&D Day

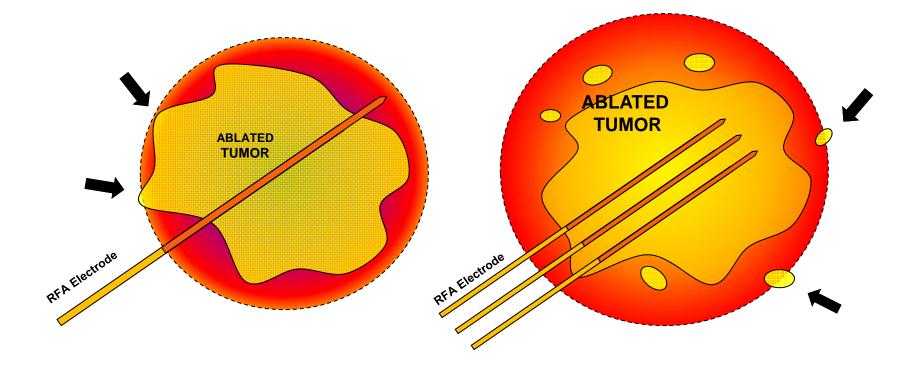
ThermoDox - Targeted Chemotherapy

Cases of RFA ± ThermoDox for HCC - The HEAT Study



Cases of RFA ± Thermodox[®] for HCC (The HEAT Study)

Won Young Tak, M.D., Ph.D. Kyungpook National University Hospital, Daegu, South Korea



BCLC Classification

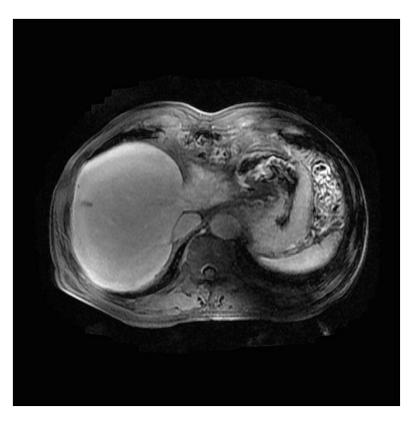
경묵니

RFA: Limited Efficacy in Larger Tumors

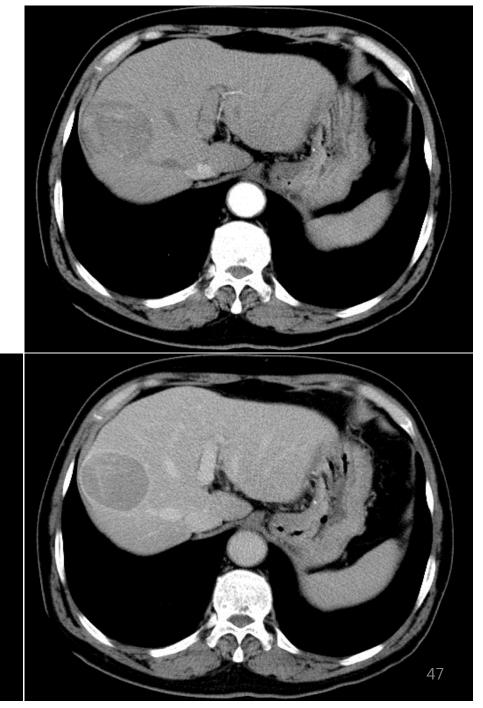


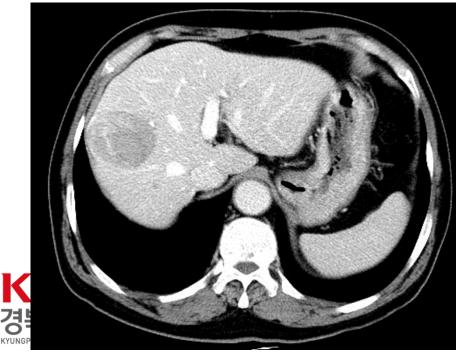
Viable tumors in margin or microsatellite nodules

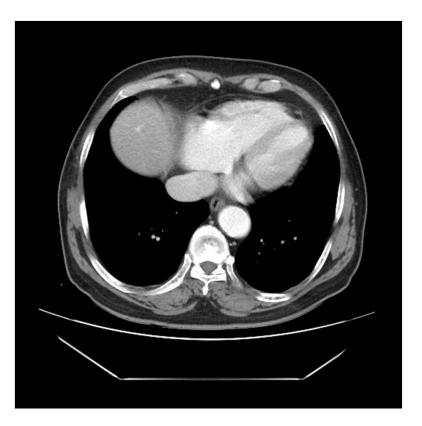
- M, 62Y
- Chronic hepatitis B
- Longest diameter: 6.0 cm
- RFA only
- RFA dwell time 84 minutes



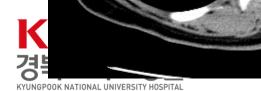
KYUNGPOOK NATIONAL UNIVERSITY HOSPITAL


Post RFA - 1 year



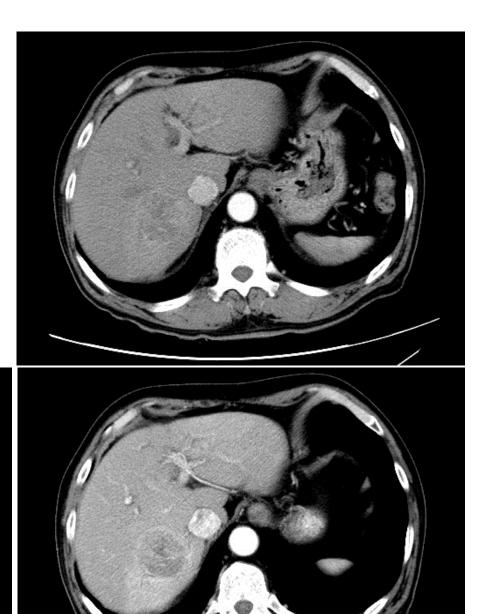

- M, 66Y
- Chronic hepatitis B
- Longest diameter: 5.6 cm
- RFA + Thermodox[®]
- RFA dwell time 72 minutes

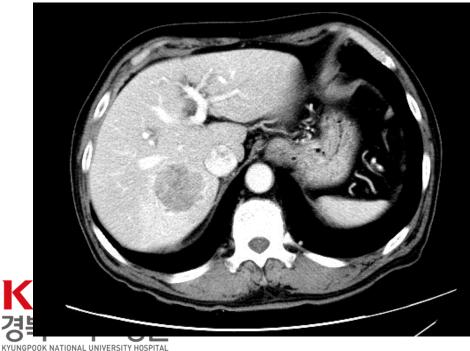
Post RFA - 7 years





- F, 38Y
- Chronic hepatitis B
- Longest diameter: 4.0 cm
- RFA + Thermodox[®]
- RFA dwell time 49 minutes


Post RFA - 5 years



- M, 67Y
- Chronic hepatitis C
- Longest diameter: 4.3 cm
- RFA + Thermodox®
- RFA dwell time 72 minutes

Post RFA - 9 year

Summary

- Possibility of microinvasion in HCC greater than 3cm in diameter is major limitation of RFA.
- Extensive ablation with RFA does not guarantee complete response in HCC greater than 3cm.
- We have many cured HCC patients from HEAT study and we expect successful data from OPTIMA study.

Thanks for your attention!

Stephen Ng Wong, M.D., FPCP, FPSG, FPSDE

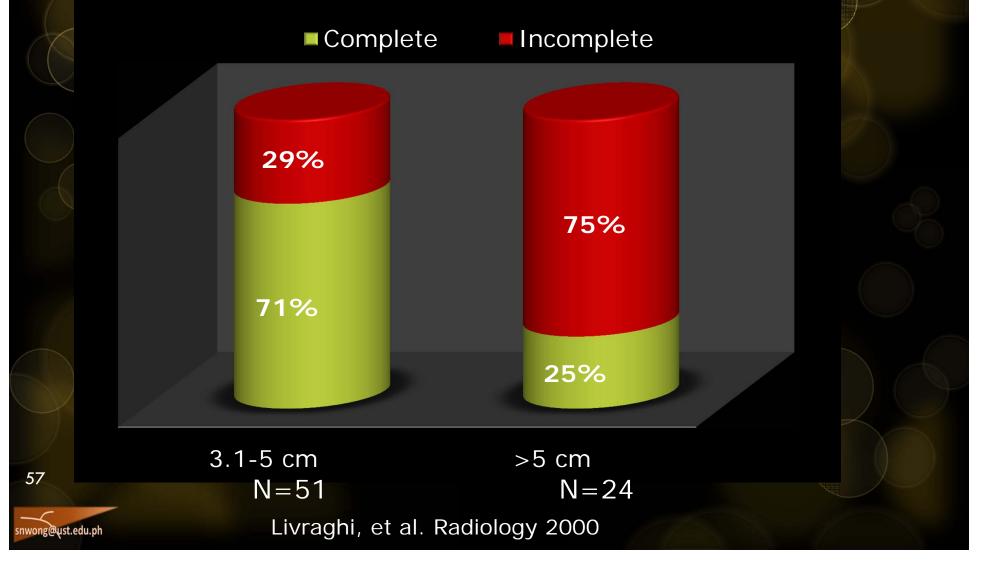
Gastroenterology and Hepatology, Chinese General Hospital, Philippines

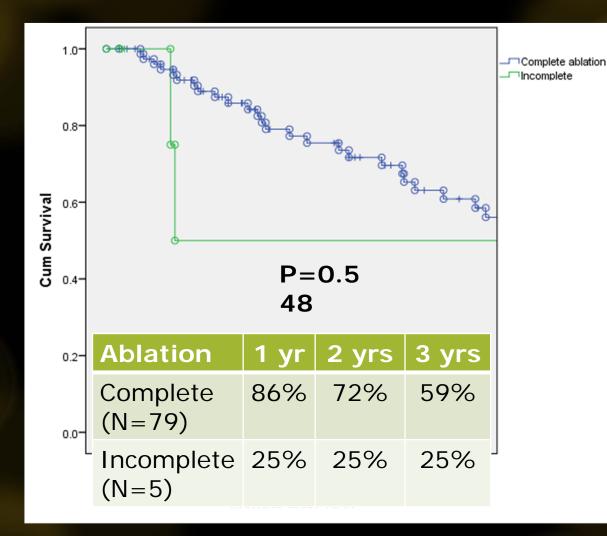
R&D Day

ThermoDox - Targeted Chemotherapy

Clinical Experience with RFA + ThermoDox for HCC 3-7 cm in Size

RFA + Thermodox for HCC 3-7 cm in Size

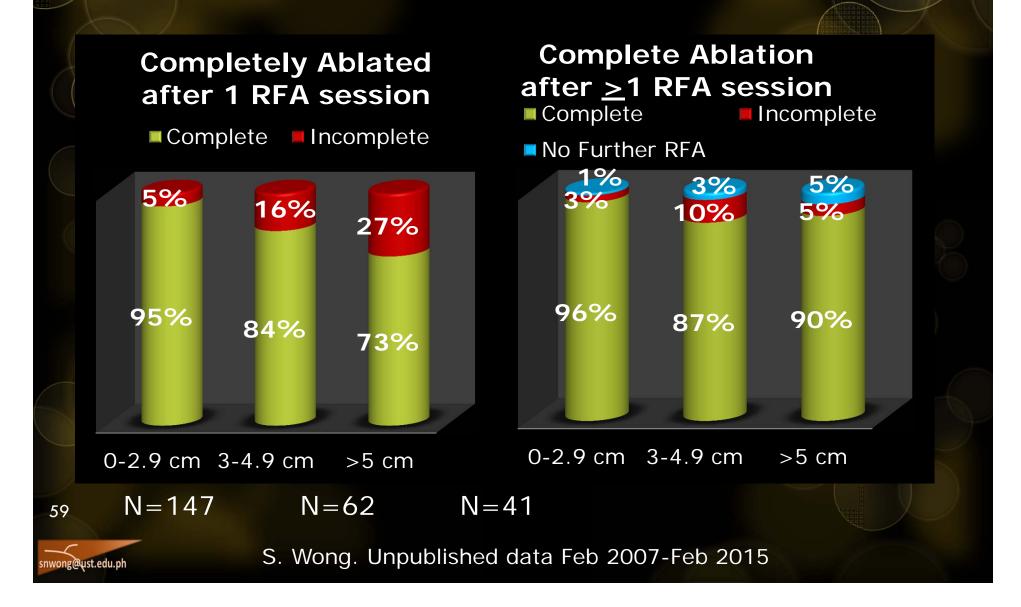

Stephen N. Wong, MD


nwong@ust.edu.ph

In Older Studies, Complete Response is Less Frequent in Larger HCC

Complete Response after 1 RFA session

Complete Response is a Factor in Survival After RFA



S. Wong. Unpublished data Feb 2007-Feb 2015

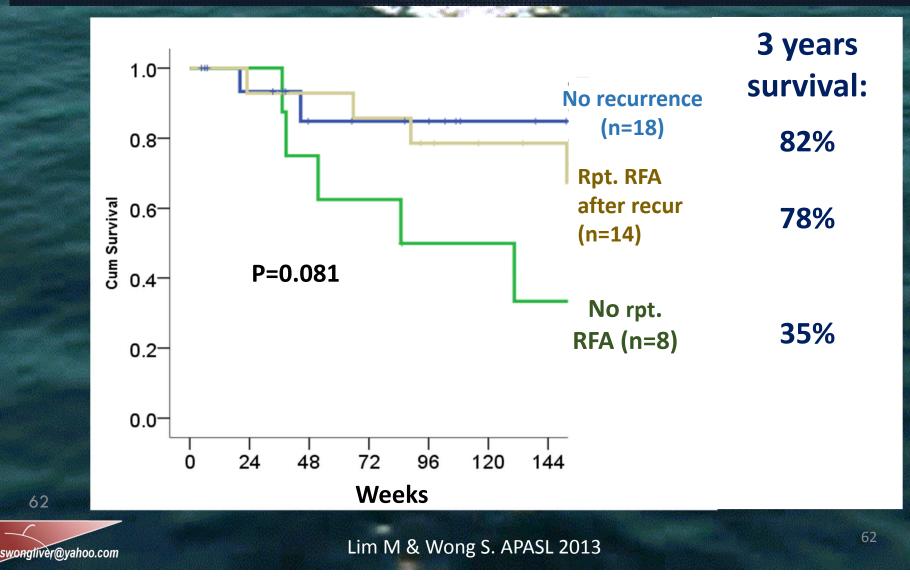
58

nwong@ust.edu.ph

Complete Ablation is High in HCC > 5 cm

On 7.1 years follow-up – no recurrence and doing well

HEAT STUDY: RFA + Thermodox 49 y/o Male: 5.2 cm 60 60 minutes dwell time


Had recurrence after 20 months Repeat RFA done with complete response Died 3 years 5 months after RFA

from liver failure

HEAT STUDY: RFA + Thermodox 63 y/o Male: 5.2 cm 61620 minutes dwell time

ong@ust.edu.ph

Repeat RFA Improves Survival After Recurrence

Before RFA

After RFA

OPTIMA STUDY: Subject 7037 – 6.7 cm Needle type: Cluster Overlapping ablations: 10 RFA dwell time: 102 mins.

63

On 6 months follow-up – no recurrence and doing well

Before

1st RFA

After 2nd

RFA

1 st

Needle type: Cluster Overlapping ablations: 6 RFA dwell time: 72 mins.

64

OPTIMA STUDY: Subject 7034 – 6.7 cm

SUMMARY

Complete response is achieved for HCC 3-7 cm with RFA

Complete response to RFA increases survival

 Recurrence can be re-treated with RFA with survival approaching those patients with no recurrence after RFA

ong@ust.edu.ph

Robert M. Eisele, M.D.

Deputy Head of Department, Dept. of General, Visceral, Vascular and Pediatric Surgery, Medical Faculty of University of Saarland, Homburg, Germany

R&D Day

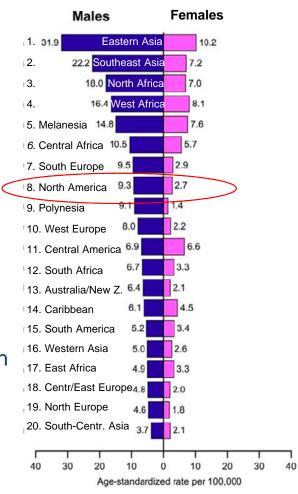
ThermoDox - Targeted Chemotherapy

Options for Local-Ablative Treatment of Large Hepatocellular Carcinoma

Options for local-ablative treatment of large hepatocellular carcinoma

CELSION Investors' meeting New York Oct 12th 2017

Agenda


- 1. 3 facts, 3 tasks
- 2. 8 options to achieve the goals
- 3. OPTIMA
- 4. summary and outlook

CELSION Investors' meeting New York Oct 12th 2017

HCC: a worldwide problem

- Worldwide 782.500 cases of new
 HCC diagnoses in 2012
- Worldwide 745.500 deaths due to HCC in 2012
- North America in 8th place of the worldwide hit list; HCC is most common in Eastern/ South Eastern Asia

Torre et al., CA Cancer J Clin 2015, 65: 87-108

1000

1000

CELSION Investors' meeting New York Oct 12th 2017

Other: 1919 (31.6%)

(3.1%)

(3.1%)

(4.5%)

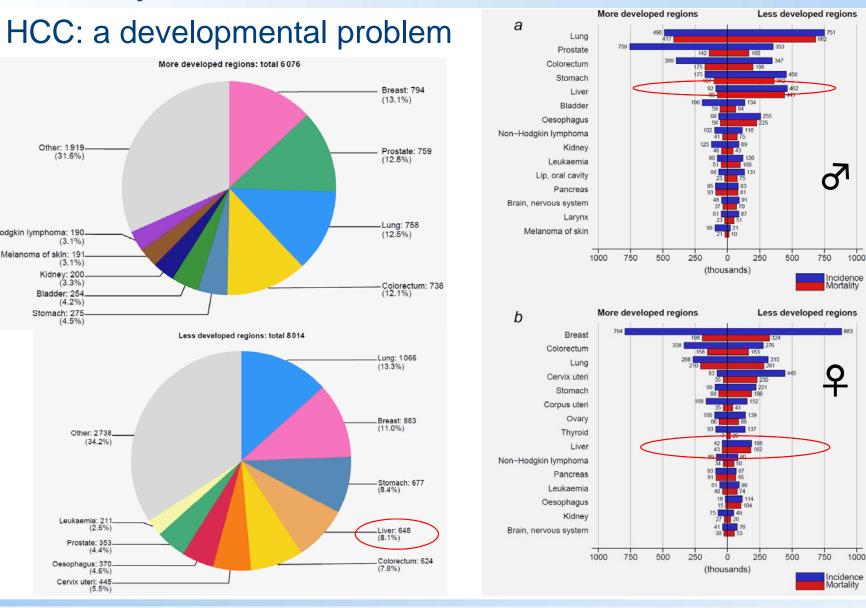
Other: 2738.

Leukaemia: 211. (2.6%)

Prostate: 353 (4.4%)

Oesophagus: 370-(4.6%)

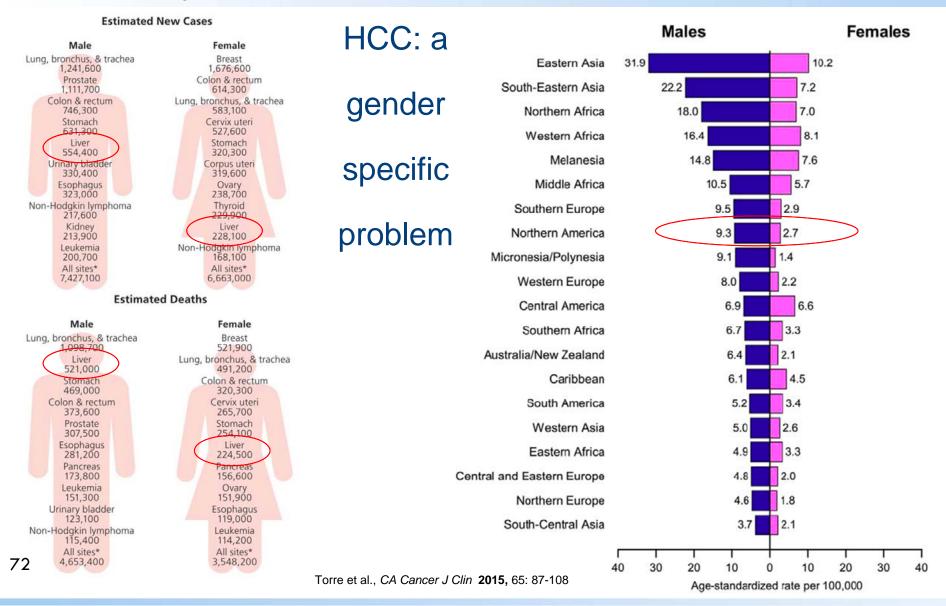
Cervix uteri: 445 (5.5%)


(34.2%)

Kidney: 200 (3.3%)

Bladder: 254 (4.2%) Stomach: 275

Non-Hodgkin lymphoma: 190

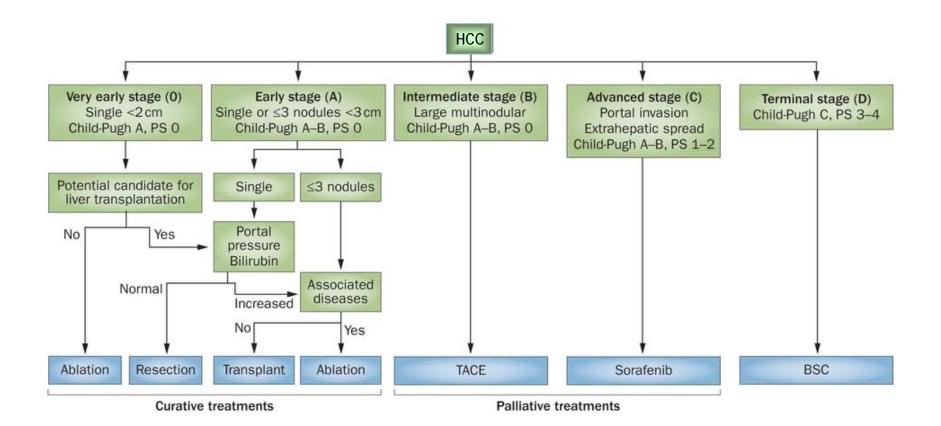

Melanoma of skin: 191

71

CELSION Investors' meeting New York Oct 12th 2017

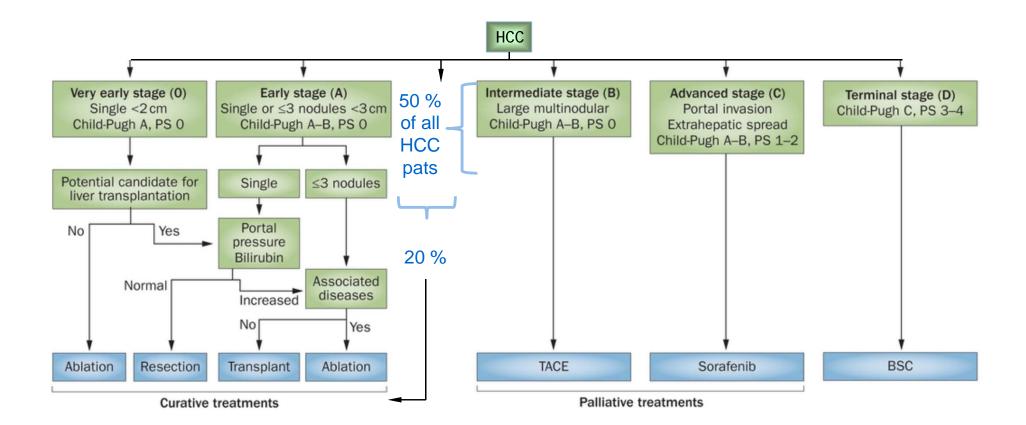
First facts:

- 1. The worldwide incidence of HCC is high and still rising
- 2. HCC is not equally distributed over the planet
- 3. HCC is more common in males and in less developed countries


First task:

Tailored treatment strategies should be

made available also to regions


outside Europe and North America!

The Barcelona Clinic Liver Cancer staging system classifies large HCC into the Intermediate stage B.

Han et al., World J Gastroenterol 2015, 21: 103277-35

Kayaalp et al., Hepatoma Res 2015, 1: 165-70

CELSION Investors' meeting New York Oct 12th 2017

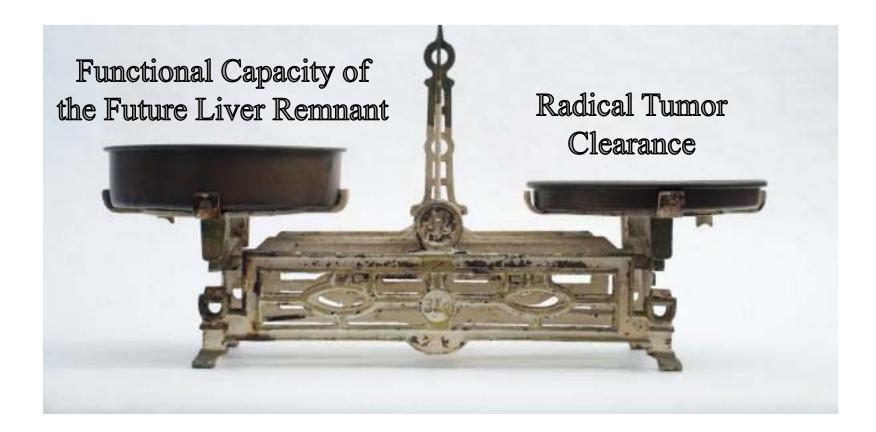
UKS Saarland University Medical Center

Second fact:

The vast majority of all HCC patients are assigned to BCLC stage B. Only 20 % of them are amenable to potentially curative

treatment strategies.

Second task:


Increasing the rate of patients which are potentially

amenable to a curative treatment option!

CELSION Investors' meeting New York Oct 12th 2017

Risk stratification in liver surgery

77

Treatment of large HCC using RFA

	n	Def.	Mean size	Range	Follow-up	Technology	Technique	Local control
Buscarini 1999	14	> 3.5 cm	5.2 cm	3.8 – 6.8 cm	13 (6-23)	TACE => RFA [3 days]	single abl. intended	78 %
Livraghi 2000	114	> 3.0 cm	5.4 cm	3.1 – 9.5 cm	6	•	< 4 cm single abl. intended, > 4 cm multiple overlapping (2-4)	52 %
Chen 2004	68	> 3.5 cm	4.8 cm	3.6 – 7.0 cm	11 (3-26)	simple RFA	multiple overlapping (geometrical model)	81 %
Miyamoto 2004	3	> 4.0 cm	5.2 cm	4.4 – 5.7 cm	n.a.	simult. TAE+RFA+HVBO	single abl. intended	66 %
Sakr 2005	40	> 5.0 cm	7.3 cm	5.5 – 9.7 cm	12	RFA => PEI [2-3 weeks]	multiple overlapping (3 [< 7 cm], or 4 [> 7 cm])	80 %
Vallone 2006	40	> 4.0 cm	4.7 cm	4.1 – 7.0 cm	35 (7-69)	simult. RFA+PEI	single/double abl. intended	95 %
Kurokohchi 2006	1	-	7.0 cm	-	short	TACE => simult. RFA+PEI [7 days]	double abl.	100 %
Zangos 2007	32	> 5.0 cm	n.a.	5.0 – 8.0 cm	36	3-5x TACE => LITT [4-6 weeks]	multiple overlapping (3 [2-5])	63 %
Seror 2008	26	> 5.0 cm	5.7 cm	5.0 – 9.0 cm	14 (3-34)	simple RFA	single or double abl. intended (multipolar)	69 %
Tarantino 2009	29	> 3.0 cm	5.5 cm	3.0 – 7.5 cm	8 (2-15)	simple RFA	single abl. intended	72 %
Hirooka 2010	20	< 15.0 cm	5.7 cm	+/- 2.1 cm	31 (24-36)	RFA => HAI [9 days (5-14)]	single abl. intended	30 %
lezzi 2015	40	> 3.0 cm	4.7 cm	3.2 – 7.5 cm	24 +/- 17	simultaneous RFA+DEB-TACE	single abl. intended	63 %
78								

CELSION Investors' meeting New York Oct 12th 2017

UKS Saarland University Medical Center

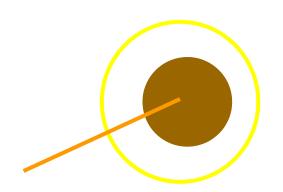
Third fact:

The efficacy of local ablation of large HCC is limited and insufficient.

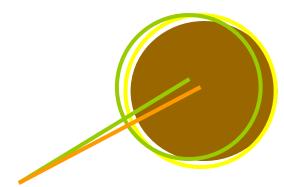
Third task:

Increasing the local control rate in patients with

large HCC undergoing thermoablation!


8 options to increase the efficacy of local ablation for HCC

- Abate the safety margin
- Change the technology
- Change the access route
- Reduce the tissue perfusion
- Combine with TACE
- Going multipolar
- Create compound lesions
- Use thermosensitizer



CELSION Investors' meeting New York Oct 12th 2017

First option: Reducing the safety margin

"meaningful margin"

Risk factor for local recurrence	No. of patients included	p
Tumor size >3/>5 cm	1817	< 0.001
Entity metastasis (vs. HCC)	4605	< 0.001
Proximity to major vessel	375	< 0.001
Superficial tumor site	70	< 0.001
Percutaneous approach	4424	< 0.001
Safety margin ≤5 mm (vs. 10 mm)	5224	<0.001
No pringle maneuvre performed	4690	< 0.05
Local anesthesia/sedation	2491	< 0.001
Modality of image guidance	4341	<u>n.s</u> .
Unexperienced interventionalist	4495	< 0.001
Early years of intervention	5224	n.s.

Influence of safety margin upon local recurrence

CELSION Investors' meeting New York Oct 12th 2017

First option: Reducing the safety margin

NO OPTION

EXPERIENCE WITH MICROWAVE COAGULATION THERAPY IN THE TREATMENT OF LARGE HEPATOCELLULAR CARCINOMA

AUTHOR/YEAR	ACCESS	N	DEF.	MEAN SIZE (RANGE)	FOLLOW- UP (MON.)	TECHNOLOGY	TECHNIQUE	LOCAL CONTROL RATE
Yu Z et al. 2009	percutaneous	4	> 5 cm	9.0 cm (6.1-13.8)	13 (3-19)	Simple MCT	Double, triple or multiple overlapping	75%
Liu FY et al. 2010	percutaneous	39	>4 cm	4.2 cm (4.0-4.8)	9 (6-24)	Simple MCT	Double/triple + 2 nd abl. if appropriate	60%
Liu Y et al. 2013	percutaneous	80	> 3 cm	4.6 cm (3.1-8.0)	32 (2-95)	Simple MCT	Multiple overlapping (2-9)	68%
Liang PC et al. 2014	laparoscopic/ open surgical	10	>4 cm	5.7 cm (4.0-7.0)	17 (> 12)	Simple MCT	Multiple overlapping (1-4)	70%
Sun AX et al. 2015	percutaneous	182	> 3 cm	3.7 cm (3.0-5.0)	18 (3-37)	Simple MCT	Multiple overlapping (number not reported)	73%
Abdelaziz AO et al. 2015	percutaneous	32	> 5 cm	5.7 cm (5.0-7.0)	22 (not reported)	Simple MCT	Not reported	59%
Liang PC et al. 2015	percutaneous/ laparoscopic/ open surgical	14	> 5 cm	5.8 cm (5.0-7.0)	16 (13-19)	Simple MCT	Multiple overlapping (1-4)	75%

83

CELSION Investors' meeting New York Oct 12th 2017

Second option: Use of MCT instead of RFA Comparative trials

Ref.	Method	Guidance	Patients	Lesions	Mean age	Time	Size in cm	Complete	Local recurrence (%)			Overa	ll survival		
								ablation (%)	-	1 yr (%)	2 yr (%)	3 yr (%)	4 yr (%)	5 yr (%)	Median (mo)
Shibata et al ^[50]	MWA	Percutaneous	36	46	62.5	-	< 4	89	17.4	-	-	-	-	-	-
	RFA	Percutaneous	36	48	63.6	-	< 4	96	8.3	-	-	-	-	-	-
Xu et al ^[84]	MWA	Percutaneous	54	112	53.4	-	2.5 ± 1.1	94.6	7.1	-	-	-	-	-	-
	RFA	Percutaneous	43	78	53.4	-	2.6 ± 1.4	89.7	12.8	-	-	-	-	-	-
Simo et al ^[85]	MWA	Laparoscopic, US	13	15	59	8-10 min	2.31	-	-	-	-	-	-	-	7
	RFA	Laparoscopic, US	22	27	59	10-12 min	2.53	-	-	-	-	-	-	-	19
Lu et al ^[78]	MWA	Percutaneous, US	49	98	50.1	5 min	3 (25/49)	94.9	11.8	81.6	61.2	50.5	36.8	-	32.5
	RFA	Percutaneous, US	53	72	54.5	10 min	3 (32/53)	93.1	20.9	71.7	47.2	37.6	24.2		27.1
Qian et al ^[63]	MWA	Percutaneous, US	22	22	52	-	4.8	95.5	18	-	-	-	-	-	-
	RFA	Percutaneous, US	20	20	56	-	3.5	95	15	-	-	-	-	-	-
Zhang et al ^[86]	MWA	Percutaneous, US	77	105	54	8 min	< 3 (36), 3.1 to 5 (41)	86.7	10.5	92.2	-	51.7	-	38.5	-
	RFA	Percutaneous, US	78	97	54	6-20 min	< 3 (47), 3.1 to 5 (31)	83.4	11.8	91	-	64.1	-	41.3	-
Abdelaziz et al ^[79]	MWA	Percutaneous	66	-	53.5	-	2.9 ± 0.97	96.1	3.9	96.4	62	-	-	-	-
	RFA	Percutaneous	45	-	56.8	-	2.95 ± 1.03	94.2	13.5	67.6	47.4	-	-	-	-
Ding et al ^[81]	MWA	Percutaneous	85	98	59	10	< 3	98.5	10.9	98.7	92.3	82.7	77.8	-	45.34
-	RFA	Percutaneous	113	131	58.6	12	< 3	99	5.2	98	90.7	77.6	77.6	-	52.99
Ohmoto et al ^[80]	MWA	Percutaneous	49	56	64		< 2		19	89	70	49	39	-	-
	RFA	Percutaneous	34	37	67		< 2		9	100	83	70	70	-	-

Green: favouring MCT

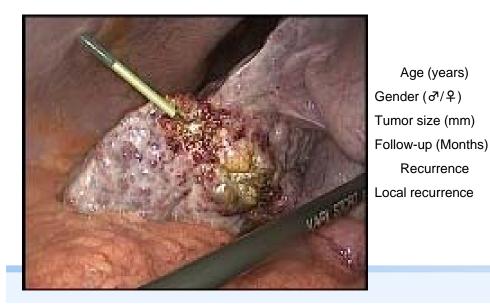
Red: favouring RFA (be aware of larger tumor sizes treated with MCT!)

CELSION Investors' meeting New York Oct 12th 2017


Second option: Change the technology

NO EXIRENCE


Third option: Surgical access to ablation


- Minimally invasive
- Low risk procedure
- Superficial tumor site
- High frequency ultrasound
- Precise needle placement
- Pringle maneuvre appliable
- Effect of pneumoperitoneum

Age (years)

Recurrence

Clinical results of MCT

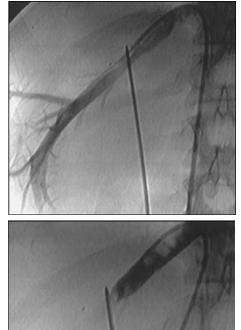
Total	Laparoscopic	Percutaneous	Statistics
64.5	65	64	p=0.29 (t-test)
15/36	7/13	8/23	p=0.34 (χ2-test)
25.5	26	25	p=0.12 (t-test)
20	20	19	p=0.59 (t-test)
39%	19%	52%	p=0,011(χ2-test)
12%	4%	17%	p=0.032 (χ2-test)

Eisele et al., Zentralbl Chir 2014, 139: 235-43

CELSION Investors' meeting New York Oct 12th 2017

Third option: Surgical access to ablation

ABSOLUTELY AN OPTION


CELSION Investors' meeting New York Oct 12th 2017

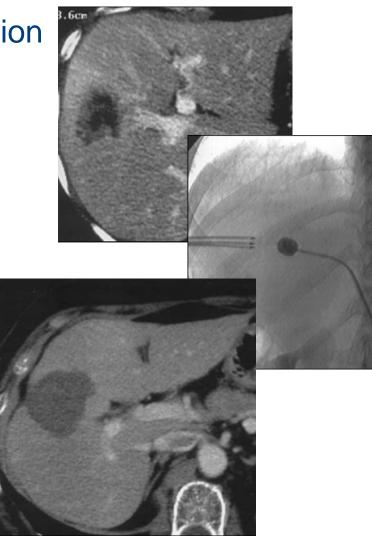
Third option: Surgical access to ablation

ABSOLUTELY AN OPTION

Fourth option: Reducing tissue perfusion

Seminal work:

- 10 patients, 2 HCCs
- Average tumor size 34
 mm


Matched to 18 other pats.

Ablation area (mm): 51 +/- 10 x 48 +/- 7

VS.

33 +/- 6 x 27 +/- 7

p< 0.0003

de Baere et al., Am J Roentgenol 2002, 178: 53-9

CELSION Investors' meeting New York Oct 12th 2017

Fourth option: Reducing tissue perfusion

USEFUL OPTION

- Pneumoperitoneum
- Pringle maneuvre
- Balloon occlusion

CELSION Investors' meeting New York Oct 12th 2017

UKS Saarland University Medical Center

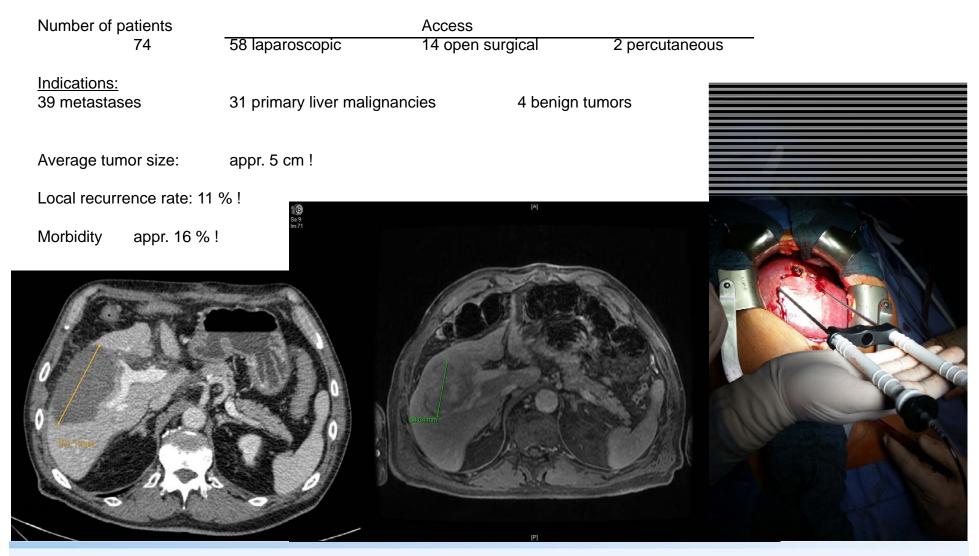
Fifth option: Combination with TACE Two meta-analyses

Tumor size		Survival		
	1 yr	3 yr	5 yr	
< 3 cm	<i>p</i> = 0.06	<i>p</i> = 0.40		
> 3 cm	<i>p</i> = 0.01	<i>p</i> = 0.0003	p < 0.0001	
> 5 cm	<i>p</i> = 0.0004	p < 0.00001		
			Ni et al., World J Gastroente	erol 2013, 19: 3872-82
				Morbidity
< 3 cm	<i>p</i> = 0.46	p = 0.49		p = 0.96
> 3 cm	<i>p</i> = 0.0004	<i>p</i> = 0.0002	<i>p</i> = 0.0001	p = 0.55

Lu et al., Eur J Gastroenterol Hepatol 2013, 25: 187-94

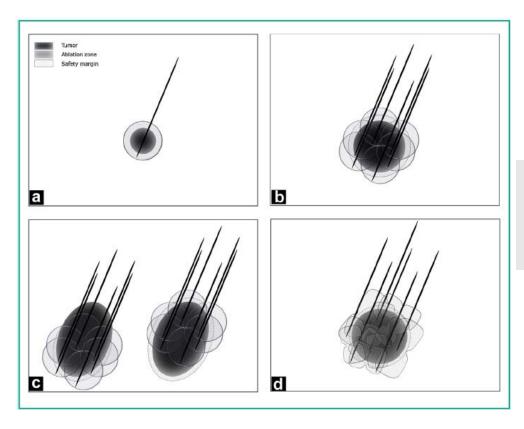
91

CELSION Investors' meeting New York Oct 12th 2017


Fifth option: combination with TACE

EVIDENCE BASED, GOOD OPTION

CELSION Investors' meeting New York Oct 12th 2017


Sixth option: Bipolar RFA

CELSION Investors' meeting New York Oct 12th 2017

Multiple bipolar RFA

Seror O, Diagn Interv Imaging 2015, 96: 617-24

Large (≥5.0-cm) HCCs: Multipolar RF Ablation with Three Internally Cooled Bipolar Electrodes—Initial Experience in 26 Patients¹

Characteristics of Tumors and Treatments in 27 HCCs 5.0 cm or Larger according to Early Response to Multipolar RF Ablation

Parameter	Complete Ablation $(n = 22)$	Incomplete Ablation $(n = 5)$
Tumor characteristic		
Diameter (cm)*	5.9 ± 0.9 (5.0–8.0)	6.2 ± 1.7 (5.0–8.5)

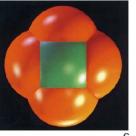
Characteristics of Tumors and Treatments in 22 of 27 HCCs 5.0 cm or Larger That Were Completely Ablated with Multipolar RF Ablation according to the Occurrence of Local Tumor Progression during Follow-up

Parameter	No Local Tumor Progression (<i>n</i> = 19)	Local Tumor Progression $(n = 3)$
Tumor characteristic		
Diameter (cm)*	5.8 ± 0.7 (5.0–7.5)	6.5 ± 1.5 (5.0–8.0)

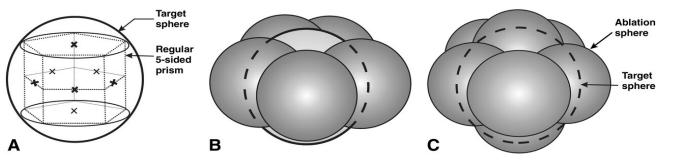
Seror et al., Radiology 2008, 248: 288-96

CELSION Investors' meeting New York Oct 12th 2017

Sixth option: Bi-, Multipolar RFA


REFINITELY AN OPTION

CELSION Investors' meeting New York Oct 12th 2017



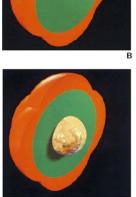

Seventh option: Compound lesions

Figure 2. Computer representations of a regular five-sided prism model. *A*, Transillumination view of the model: A regular five-sided prism is inscribed in a target sphere. The ablation model is constructed by performing five ablations on the five lateral sides, one ablation on the upper side, and another ablation on the lower side, for a total of seven ablations. *B*, Anterosuperior view of the model: Five ablations are performed on lateral sides of the regular prism. *C*, Two additional spheres are used to cover the upper and lower sides. The drawing depicts the ablation volume encompassing the target sphere—that is, the tumor plus at least 0.5 cm of tumor-free margin. × indicates the target site of each ablation—that is, the ablation sphere center.

Chen et al., Radiology 2004, 232: 260-71

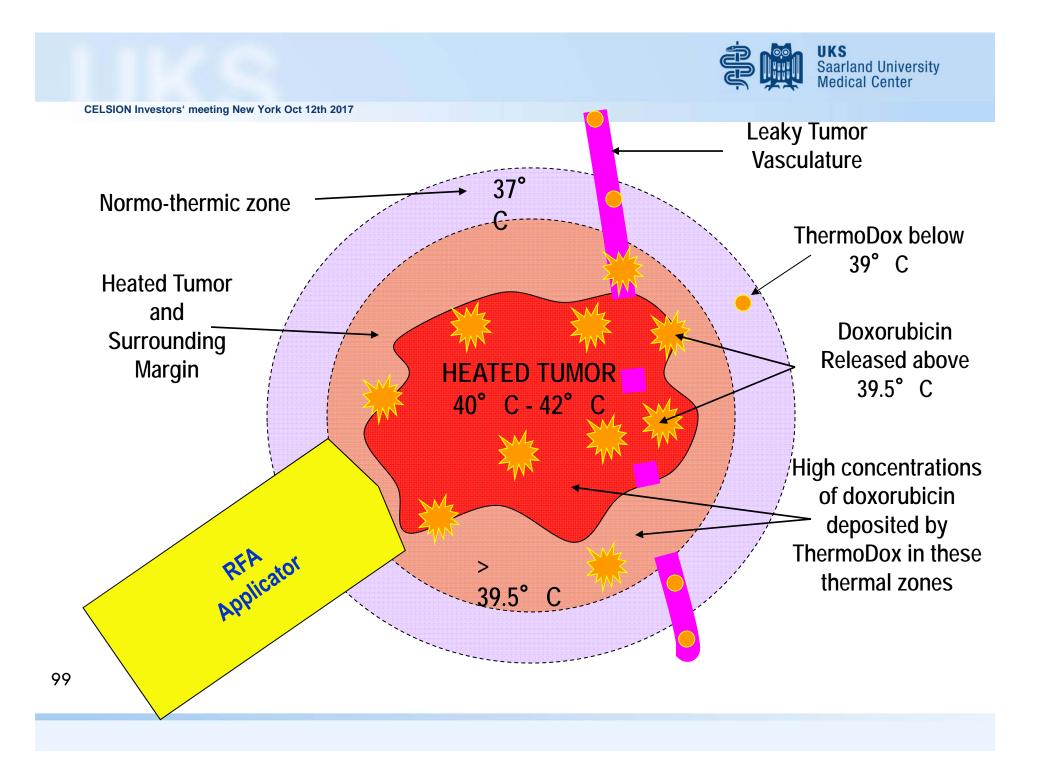
D

A-D, Six-sphere ablation model is constructed by performing four ablations in the *x*-*y* plane (**A**-**C** sequentially) and two along the *z*-axis (**D**). Green sphere represents total volume of tissue requiring ablation (tumor plus 1-cm tumor-free margin), and red spheres represent individual thermal ablation spheres that are being overlapped. Largest composite ablation sphere is created when all spheres are overlapped by approximately 23% of diameter.

Dodd et al., AJR 2001, 177: 777-81

CELSION Investors' meeting New York Oct 12th 2017

Seventh option: Overlapping ablation areas


TECHNICALLY DIFFICULT OPTION

CELSION Investors' meeting New York Oct 12th 2017

Eighth option: A thermosensitizer

- Exclusive effect on tumor cells
- o No systemic toxicity
- o Temperature dependant
- o Max. intratumoral concentration
- o Ideally enhancing radiological visibility

OPTIMA Trial:

Celsion Protocol 104-13-302

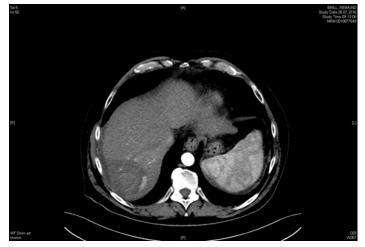
A Phase III, Randomized, Double Blind, Dummy-Controlled Study of ThermoDox[®] (Lyso-Thermosensitive Liposomal Doxorubicin-LTLD) in Hepatocellular Carcinoma (HCC) using standardized Radiofrequency Ablation (RFA) treatment time ≥ 45 minutes for solitary lesions ≥ 3 cm to ≤ 7 cm.

OPTIMA – preliminary experience

Pat.	Age	Size	min.	days	Seg.	access	f-u
1	78	4.7	170	15	IVa	Open	655
2	78	6.5	71	7	VIII	СТ	604
3	77	4.0	93	4	VII	Sono	563
4	59	6.4	155	8	VII	Lap.	452
5	81	6.0	95	3	VIII	СТ	381
6	80	4.4	95	2	V/VIII	Sono	136
7							

Pat.	f-u	access	initial success	f-u treatm.	LTR	rec.	Status
1	655	Open	complete	0	0	CR	alive
2	604	СТ	complete	SIRT	113	PD	alive
3	563	Sono	complete	0	0	CR	alive
4	452	Lap.	incomplete	redo, MCT	0	CR	alive
5	381	СТ	complete	0	0	CR	alive
6	136	Sono	complete	0	0	CR	alive
7							
101							





CELSION Investors' meeting New York Oct 12th 2017

OPTIMA – laparoscopic case

102

ThermoDox toxicity data

- Toxicity profile is similar to intravenous infusions of Adriamycin
 - Bone marrow suppression (nadir ~ 10-14 days post-infusion)
 - Bone marrow recovers by ~21 days
 - Mild to moderate alopecia
 - Nausea and Vomiting
 - Delayed cardiotoxicity cumulative dose (months/years)

Pat. adverse side effects suggestion

1 a		Suggestion
1	Stomatitis aphthosa, leucopenia, portal vein thrombosis (partial)	Verum
2	Urinary tract infection, leucopenia, alopecia	Verum
3	Pain, leucopenia, alopecia	Verum
4	None	Placebo
5	Elevated inflammation markers in clinical chemistry	?
6	None	Placebo
7		

103

CELSION Investors' meeting New York Oct 12th 2017

Eighth option: ThermoDox

A PROMISING OPTION !

Summary

- Abate the safety margin
- Change the technology
- Change the access route
- Reduce the tissue perfusion
- Combine with TACE
- Going multipolar
- Create compound lesions
- Use thermosensitizer

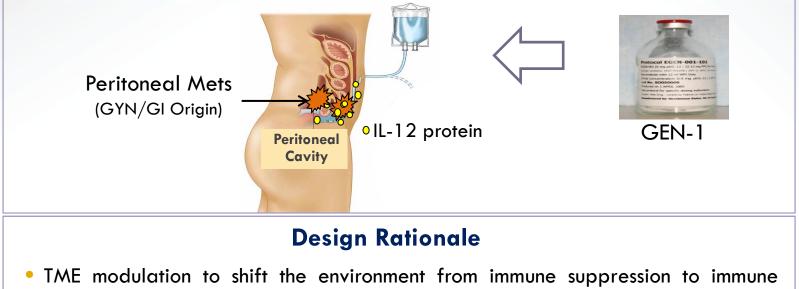
CELSION Investors' meeting New York Oct 12th 2017

Thank you very much for your patience!

106

Khursheed Anwer, Ph.D.

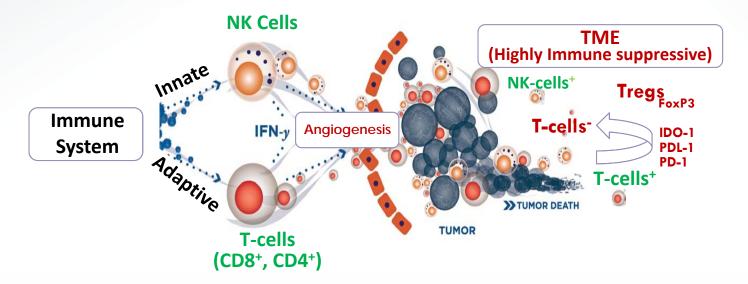
Executive Vice President and Chief Science Officer


R&D Day

The Science of GEN-1 A DNA-based Immunotherapeutic

GEN-1 Design Objectives

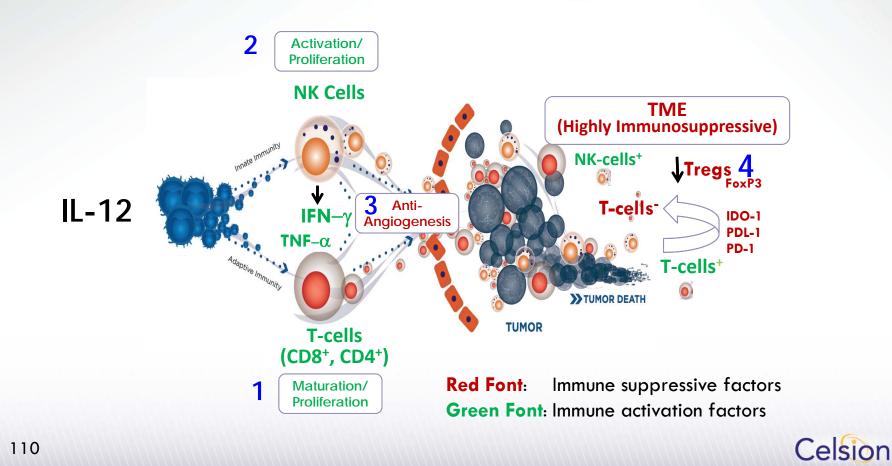
 To modulate the tumor microenvironment (TME) favoring immune stimulation through delivery of a potent immune agent IL-12 into peritoneal cavity in a local and persistent manner


- activation is key to immunotherapy success
- Persistent immunotherapy levels at TME offer better safety/activity profile
- IL-12 is a naturally produced immune cytokine with multi-action immune profile

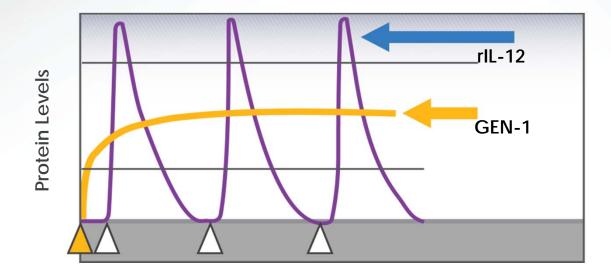
TME Modulation is Important for Effective and Durable Treatment of Cancer

TME is a Battleground b/w Immune Activation & Immune Suppression Factors

Red Font: Immune suppressive factors Green Font: Immune activation factors

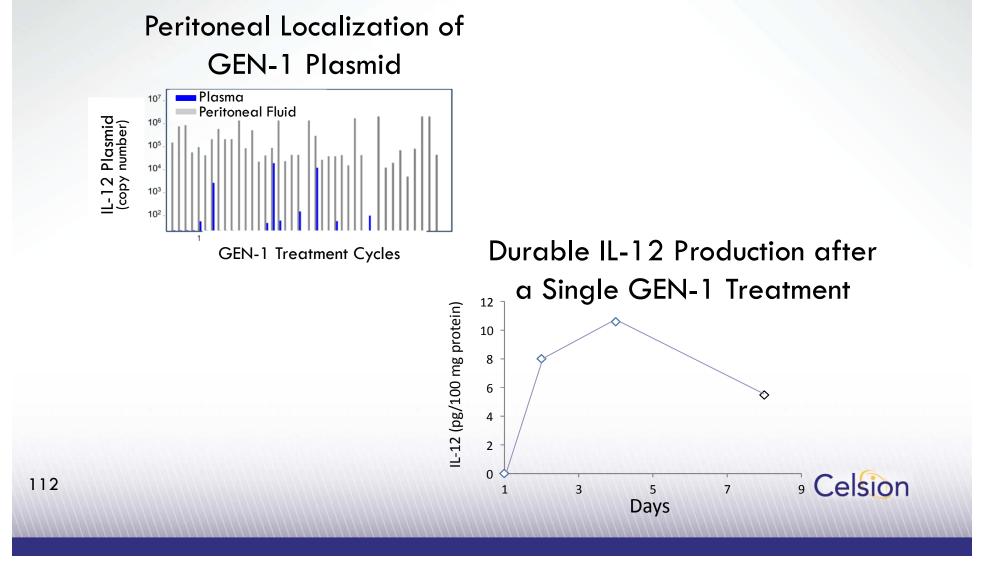


For an Effective & Durable Treatment the TME must be shifted from Immune Suppression to Immune Activation

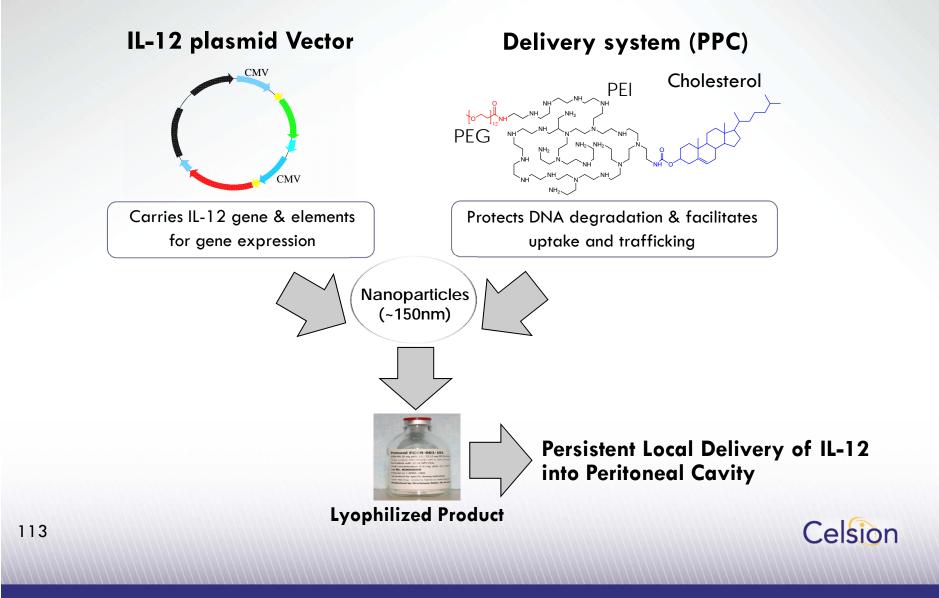

Celsion

IL-12 is a Multifunctional Immune Modulating Agent Against Cancer

At least Four Distinct Mechanisms of Immune Modulation by IL-12



Despite Clinical Benefits in Multiple Cancer Types Poor PK of rIL-12 Limits its Clinical Use



- <u>Frequent bolus dosing</u>, resulting in <u>high systemic</u> IL-12, <u>serious</u> <u>toxicity</u>, and desensitization undermines IL-12 pluripotency
- Celsion's GEN-1 approach addresses the above limitations of rIL-12 and provides a unique pharmacokinetic profile
 Celsion

Evidence of Local Delivery & Durability of IL-12 by GEN-1 IP in Ovarian Cancer

GEN-1 Composition is Key to its Functional Properties

GEN-1 Ovation Trial in Ovarian Cancer

The OVATION Study

(newly diagnosed ovarian cancer)

Review of the Clinical Data

Dr. Premal Thaker, M.D., Associate Professor, Obstetrics and Gynecology, Washington University School of Medicine in St. Louis

 Review of the Translational Data & Novel GEN-1 Combination Strategies

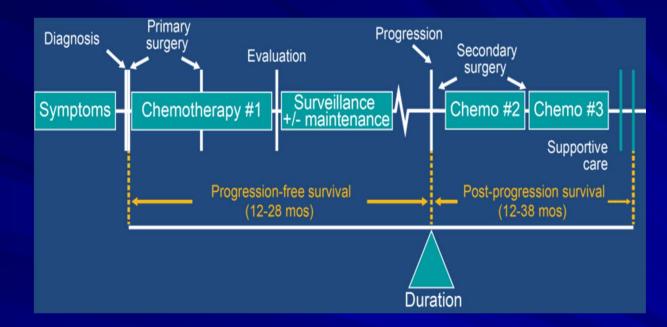
Dr. Richard Koya, M.D., Ph.D.; Associate Professor of Oncology and Immunology, Director of the Vector Development & Production Facility, Associate Director of the Center for Immunotherapy, Roswell Park Cancer Institute Center for Immunotherapy

Premal Thaker, M.D., M.Sc.

Washington University School of Medicine, Associate Professor of Obstetrics and Gynecology, Division of Gynecologic Oncology

R&D Day

OVATION Study Review of Clinical Data



Ovation Trial: Clinical Results

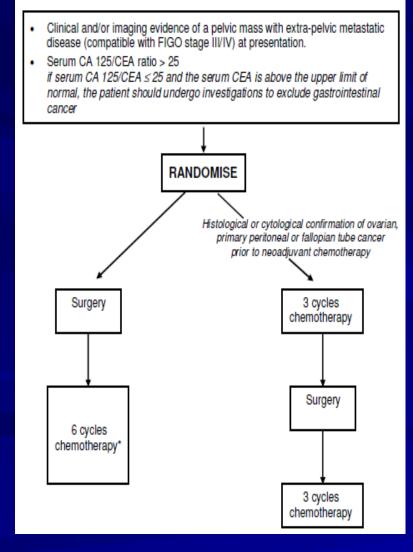
Premal H. Thaker Associate Professor Gynecologic Oncology Washington University School of Medicine

Treatment Landscape Overview for Advanced Ovarian Cancer

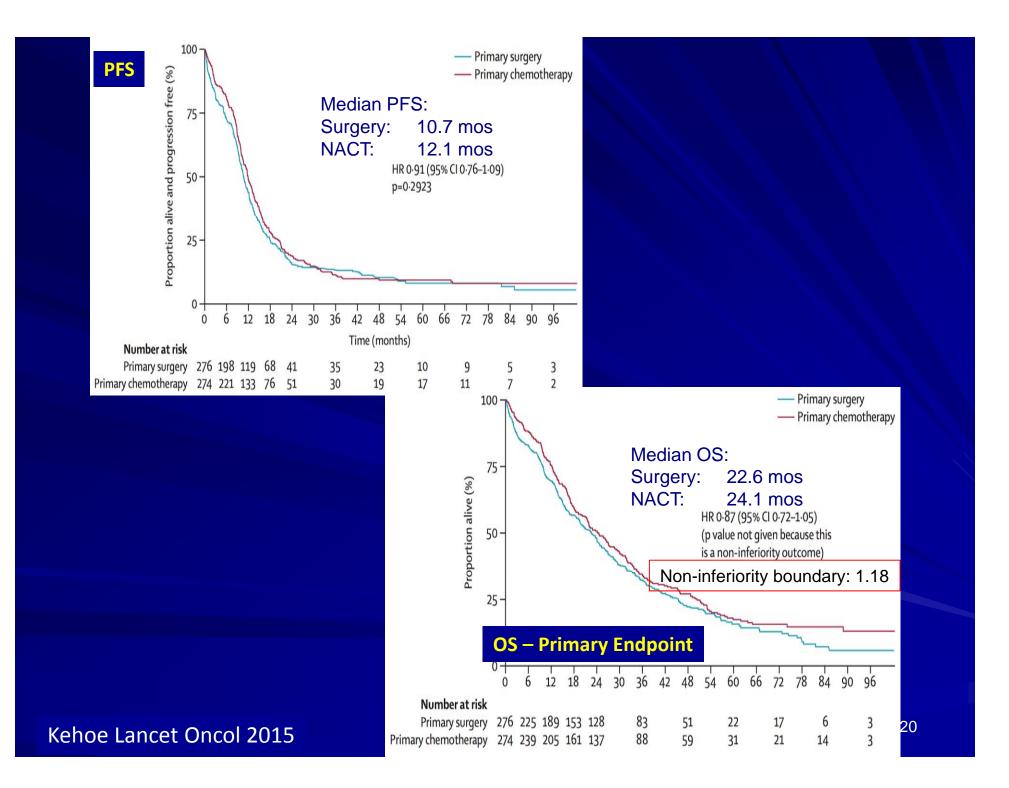
- Surgical goal is complete cytoreduction of all macroscopic visible disease¹
- Standard adjuvant chemotherapy is an IV or IP taxane/platinum combination¹
- Despite optimal upfront surgery and adjuvant chemotherapy, approximately 80% of patients will relapse²
- Unknowns: maintenance therapy, antiangiogenic therapy, role of IP therapy, and dose-dense schedule

EOC, epithelial ovarian cancer; IV, intravenous; IP, intraperitoneal.
Image curtesy of Dr. Robert Coleman
1. Ledermann et al. Ann Oncol. 2013;24 Suppl 6:vi24-32.
2. du Bois. Cancer. 2009;115(6):1234-44.

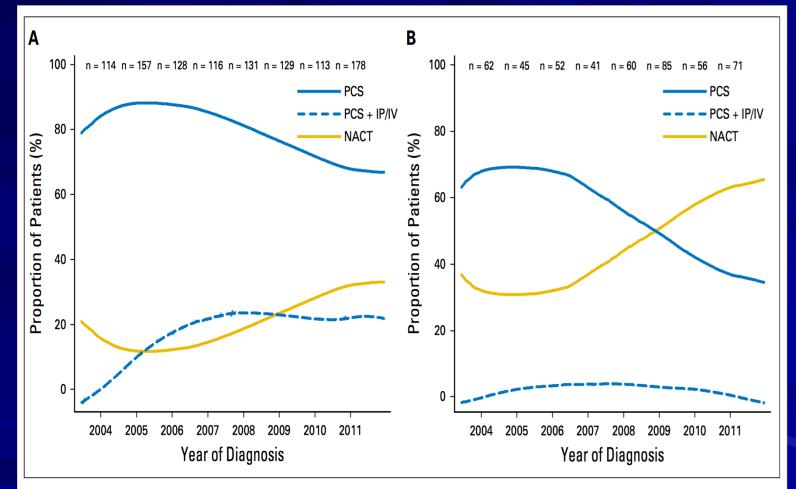
Rationale for Neoadjuvant Chemotherapy


Theoretical:

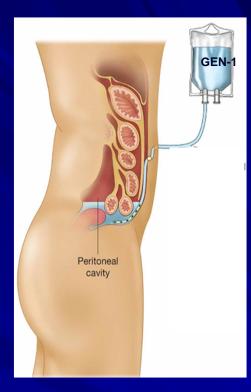
- Primary surgical benefit is largely in those with R0 resection
 - 25-40% of patients
- Biology driving disease distribution is more important to survivorship than surgical effort
- Practical:
 - Easier surgery
 - Higher rates of R0
 - Decreased surgical morbidity
 - Test of chemosensitivity


Kehoe Lancet Oncol 2015

CHORUS: Chemo or Upfront Surgery



·	Primary surgery (n=276)	Primary chemotherapy (n=274)	Total (n=550)
Median age (years)	66 (26-87, 57-72)	65 (34-88, 59-71)	65 (26-88, 58-72)
Median tumour size (cm)	8 (0.7–30, 5–12)	8 (0.9–28, 5–12)	8 (0.7-30, 5-12)
≤2 cm	13 (5%)	13 (5%)	26 (5%)
≤5 cm	59 (21%)	60 (22%)	119 (22%)
≤10 cm	111 (40%)	110 (40%)	221 (40%)
≤20 cm	79 (29%)	79 (29%)	158 (29%)
>20 cm	7 (3%)	7 (3%)	14 (3%)
Unmeasurable disease	7 (3%)	5 (2%)	12 (2%)
Clinical FIGO stage			
	206 (75%)	206 (75%)	412 (75%)
IV	70 (25%)	68 (25%)	138 (25%)
CA125/CEA ratio			
>25	272 (99%)	268 (98%)	540 (98%)
≤25	4 (1%)	6 (2%)	10 (2%)
WHO performance status			
0	83 (30%)	88 (32%)	171 (31%)
1	138 (50%)	133 (49%)	271 (49%)
2	53 (19%)	49 (18%)	102 (19%)
3	1 (<1%)	4 (1%)	5 (1%)
Missing data	1	0	1
Prespecified chemotherapy regimer	1		
Single agent carboplatin	66 (24%)	63 (23%)	129 (23%)
Carboplatin plus paclitaxel	207 (75%)	210 (77%)	417 (76%)
Carboplatin plus other chemotherapy agent	3 (1%)	1 (<1%)	4 (1%)


Data are median (range, IQR) or n (%; percentages calculated for patients with non-missing data). FIGO=International Federation of Gynaecology and Obstetrics. CA125=cancer antigen 125. CEA=carcinoembryonic antigen.

NACT Trends

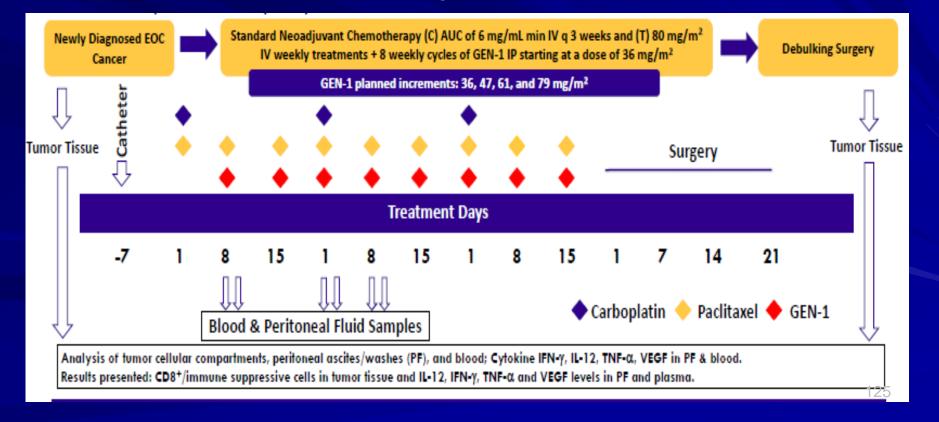
Fig 1. (A) Stage IIIC disease. (B) Stage IV disease. Use of neoadjuvant chemotherapy (NACT) increased significantly over time ($P_{trend} < .001$ for both groups). Intraperitoneal and intravenous (IP/IV) chemotherapy is shown for comparison. Three patients with stage IIIC disease and one with stage IV who were diagnosed in 2003 are included in the estimate for 2004. Twenty-three patients with stage IIIC disease and seven with stage IV who were diagnosed in 2012 are included in the estimate for 2011. PCS, primary cytoreductive surgery.

GEN-1 CLINICAL EXPERIENCE

GEN-1 Prior Clinical Studies

Study	N	Platinum Sensitivity	IP Dose (mg/m2)	Dosing Schedule
EGEN-001-101	13	Resistant	.6, 3.0, 12, 24	Weekly x4
EGEN-001-201	13	Sensitive	12, 18, 24	Weekly x8
GOG-170Q	20	Resistant	24	Weekly until toxicity/progression
GOG-9928	16	Resistant	24, 36	Weekly until toxicity/progression
201-14-101	18	First Line (Neoadjuvant)	36, 47, 61, 79	Weekly x8
Total Subjects	80			

Phase I Trial of GEN-1 + Neoadjuvant Chemo in Newly Diagnosed Ovarian Cancer Patients (The "OVATION" Trial)


Primary Objective:	Safety, tolerability, MTD
Secondary Objective:	Objective Tumor Response Rate, pCR PFS, OS

Translational Research

Newly Diagnosed Ovarian Cancer					
Cohort	Number of Subjects	GEN-1 (mg/m ²)	Carboplatin (AUC)	Paclitaxel (mg/m²)	
1	3-6	36	6	80	
2	3-6	47	6	80	
3	3-6	61	6	80	
4	3-6	79	6	80	

OVATION (Protocol 201-14-101) Phase 1 Study Design and Methods

- Standard 3+3 design with approximate 30% dose increments between successive cohorts of patients. Dose levels of GEN-1 in conjunction with standard carboplatin (C) and paclitaxel (T)
- Tolerated dose is confirmed when 3-6 patients are treated at a dose level and <2 patients experience dose-limiting toxicities (DLTs)

OVATION (Protocol 201-14-101) Study Population

- Patients newly diagnosed with EOC were eligible; patients who received prior radiotherapy or chemotherapy to any portion of the abdominal cavity and/or pelvis were excluded.
- Candidates for neoadjuvant chemotherapy
- A majority of the patients were Stage IIIC (10, 63%), followed by Stage IV (5, 31%) and one patient was Stage IIIB (1, 6%).
- All but one patient had high grade serous adenocarcinoma (15, 94%); the exception being clear cell adenocarcinoma (1, 6%).
- The median baseline CA-125 reported was 683 (78 4348) across all 4 cohorts.

OVATION (Protocol 201-14-101) Safety Results

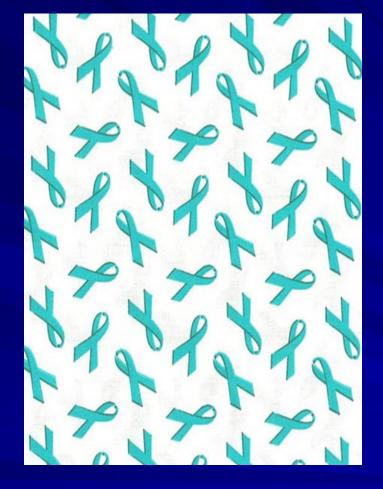
- The safety evaluation period is based on the first 4 doses of GEN-1 administered to each patient. The DSMB has reviewed data from the first 4 cohorts of patients. To date, 15 patients have been evaluated for safety and no DLTs have been identified.
- Most common adverse events reported, regardless of causality, in descending order are nausea, constipation, fatigue, abdominal pain and cramping, neutropenia, anemia, anorexia, and vomiting.
- Most common toxicities reported, which can be attributed to GEN-1, in descending order include nausea, abdominal pain and cramping, fatigue, vomiting, neutropenia and diarrhea.
- A total of 5 patients discontinued GEN-1 treatments due to adverse events. Only one was GEN-1 related (altered taste).

OVATION (Protocol 201-14-101) Efficacy Results

RECIST Response	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
Complete Response	1, 33.3%	0, 0%	0, 0%	1, 20%	2, 14%
Partial Response	0, 0%	3, 100%	3, 100%	4, 80%	10, 72%
Stable Disease	2, 66.6%	0, 0%	0,0%	0, 0%	2, 14%
Interval Debulking Status	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
RO	2, 66.6%	0, 0%	2, 66.6%	5, 100%	9, 64.3%
R1	1, 33.3%	2, 66.6%	0, 0%	0, 0%	3, 21.4%
R2	0, 0%	1, 33.3%	1, 33.3%	0, 0%	2, 14.3%
Pathological Response	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
cPR	1, 33.3%	0, 0%	0, 0%	<mark>0,</mark> 0%	1,7%
micoPR	1, 33.3%	2, 66.6%	1, 33.3%	3, 60%	7, 50%
macroPR	1, 33.3%	1, 33.3%	2, 66.6%	2, 40%	6, 43%

OVATION Study Summary of Progression Data: As Treated

Current PFS Median – 14.0 months


- Assumes all ongoing patients censored 3 October 2017

– Only patients treated according to protocol requirements

Cohort	Patient ID	First Dose of Chemo	Date of Progression or Date of Last Update	Time from Chemo (days)	Time from Chemo (months)
4	OV01-06(17)	2/15/2017	10/3/2017	230	7.67
4	OV04-07(16)	12/14/2016	10/3/2017	293	9.77
1	OV01-01(01)	10/5/2015	9/19/2016	350	11.67
4	OV03-02(14)	10/10/2016	10/3/2017	358	11.93
4	OV04-06(15)	10/4/2016	10/3/2017	364	12.13
4	OV04-05(13)	9/28/2016	10/3/2017	370	12.33
3	OV02-02(12)	8/9/2016	10/3/2017	420	14.00
3	OV04-04(10)	6/21/2016	8/16/2017	421	14.03
3	OV01-05(11)	7/6/2016	10/3/2017	454	15.13
2	OV03-01(09)	4/13/2016	10/3/2017	538	17.93
2	OV04-02(07)	3/30/2016	10/3/2017	552	18.40
1	OV01-04(05)	2/8/2016	10/3/2017	603	20.10
1	OV01-02(02)	10/6/2015	10/3/2017	728	24.27

Grey Row = Progression

Richard Koya, M.D., Ph.D.

Associate Professor of Oncology and Immunology, Director of the Vector Development & Production Facility, Associate Director of the Center for Immunotherapy, Roswell Park Cancer Institute Center for Immunotherapy

R&D Day

OVATION Study

Review of Translational Data & Novel Combination

Immunotherapy Concepts

131

Key Objectives of the Ovation TR Studies:

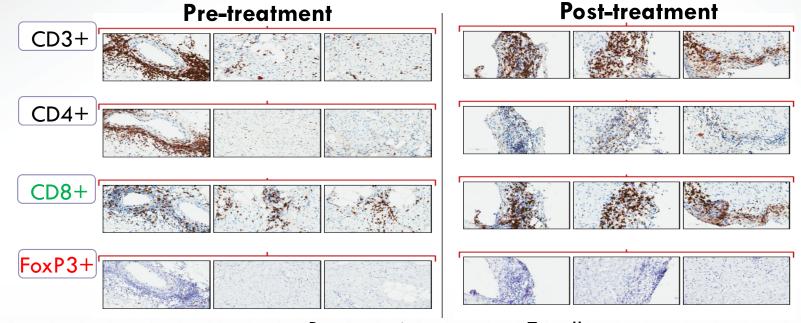
Determine the evidence of molecular signaling

 Changes in IL-12 (gene transfer), IFN-g (immune activation) and VEGF (anti-angiogenesis) levels in biological fluid

Determine the evidence of cellular signaling at tumor site

- Changes in specific immune cells populations
- Balance b/w activating and suppressive immune cells populations

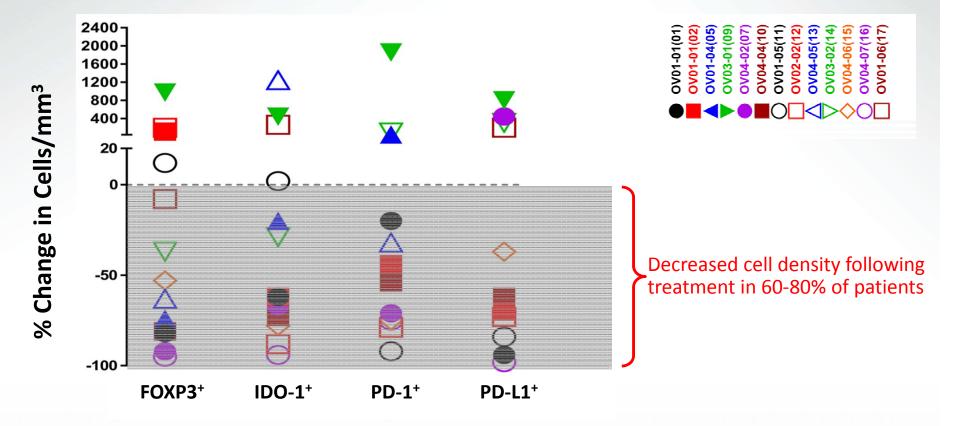
Evidence of Molecular Signaling


- Rise in IL-12 levels shows evidence of IL-12 gene transfer
- Rise in IFN-g shows activation of the downstream IL-12 signaling
- Inhibition of VEGF shows anti-angiogenic response
- Molecular response follows a dose trend
- Molecular changes primarily local than systemic

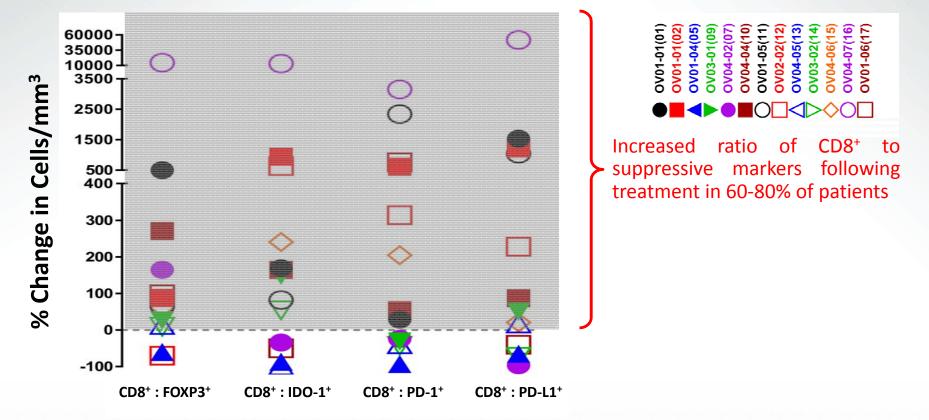
Evidence of Cellular Signaling

Higher Infiltration of T-cells into Tumor Tissue Following Treatment

IHC: Subject OV01-02(02)


Brown stain represents T- cells

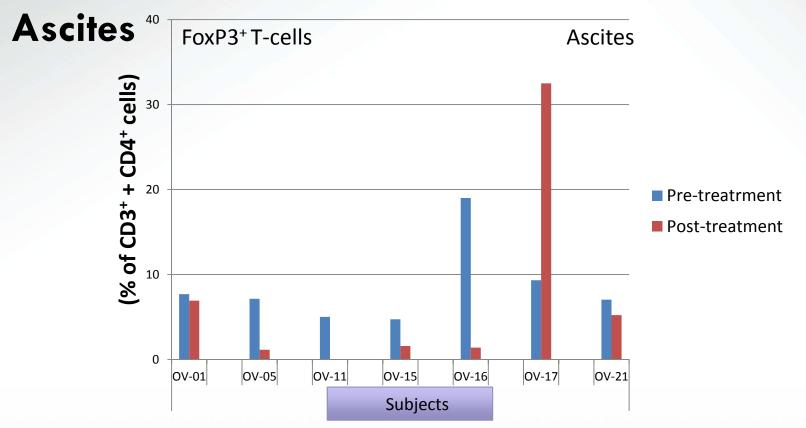
134


Reduction in the Immune Suppressive Markers in TME of a Majority of Patients

- 135
- T-cell expressing FoxP3, IDO-1, PD-1 or PD-L1 in tumor sections counted
 % change b/w pre & post-treatment counts plotted

Celsion

Shift from Immune Suppressive to Immune Favoring TME in a Majority of Patients



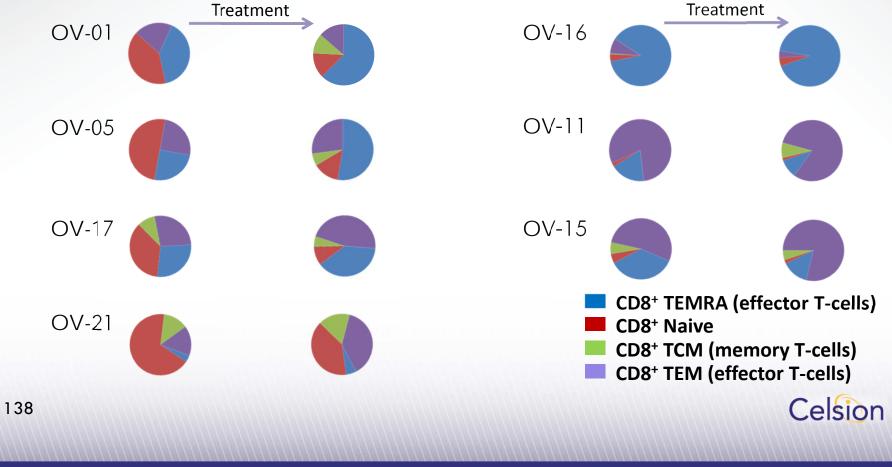
Ratio of CD8 cells to FoxP3, IDO-1, PD-1 or PD-L1 T-cells in tumor sections counted

Celsion

¹³⁶ % change in the ratio b/w pre & post-treatment plotted

Reduction in the Immunosuppressive Mechanisms in TME also Observed in Tumor

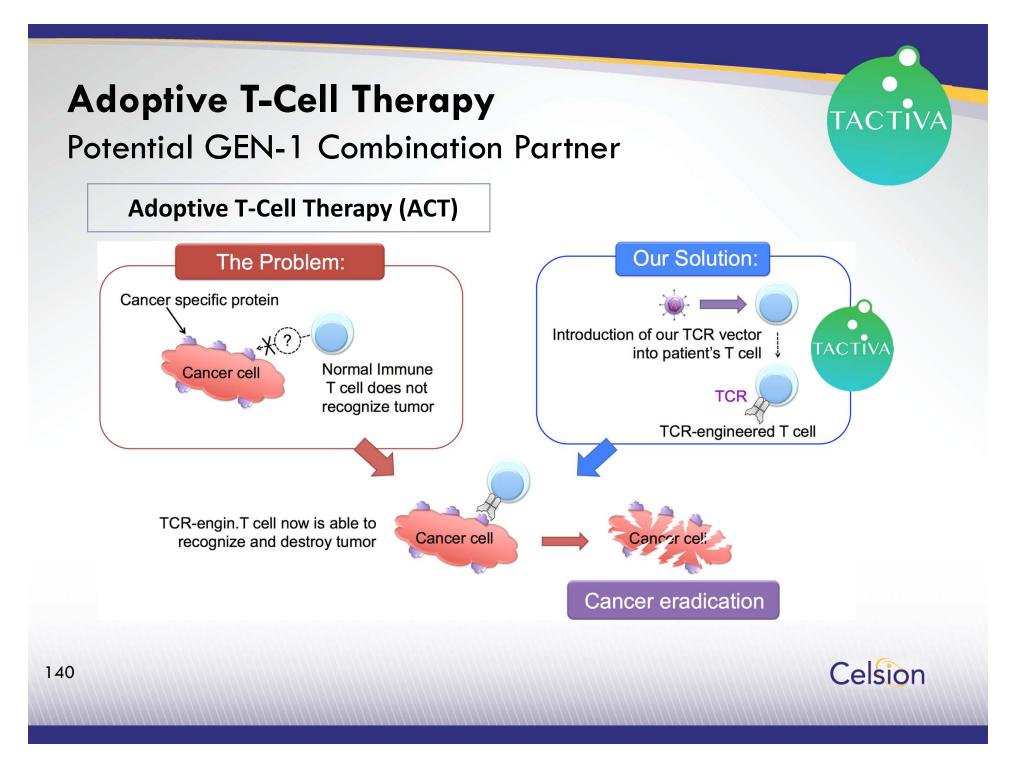
Treg cells in ascites samples were counted by FACS before and after treatment

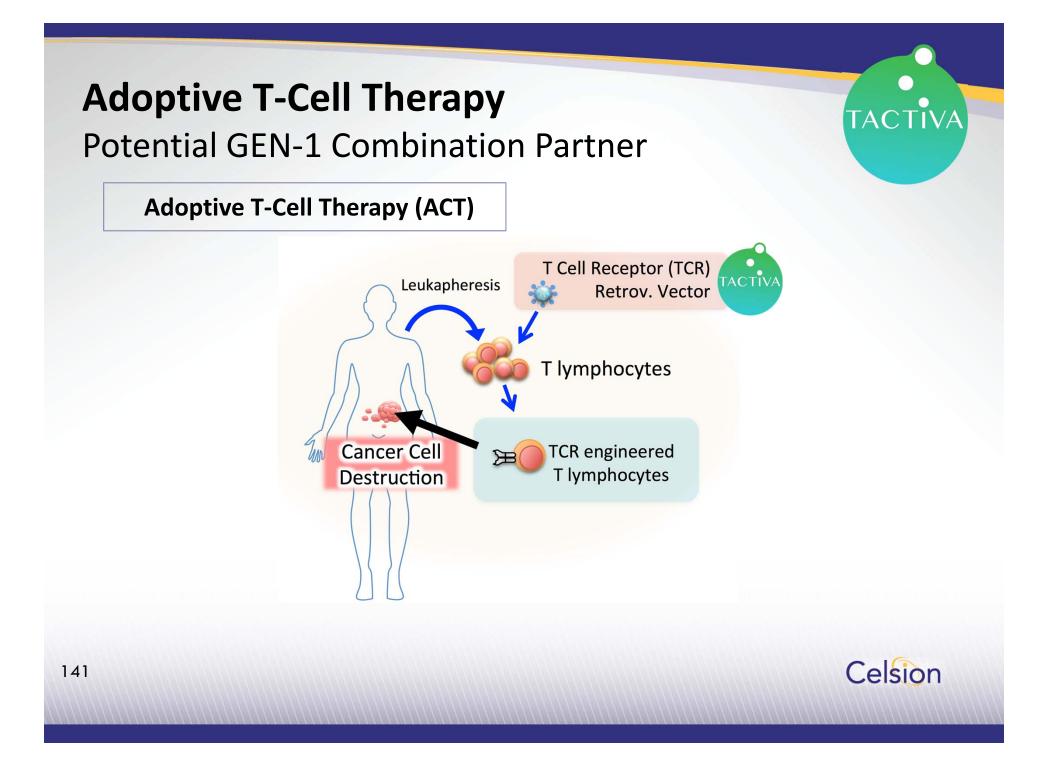

Celsion

• The CD8⁺ cell count is expressed as % of CD3⁺ gated cells

137

Increased Tumor-Killing Function of CD8+ T- Cells in Ascites

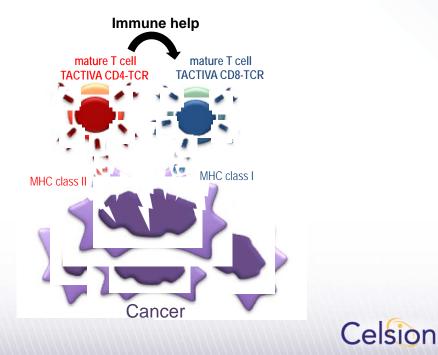

A phenotypic shift from high naïve T-cell subset to cytotoxic effector subset



Novel Immunotherapy Combination Approaches with GEN-1

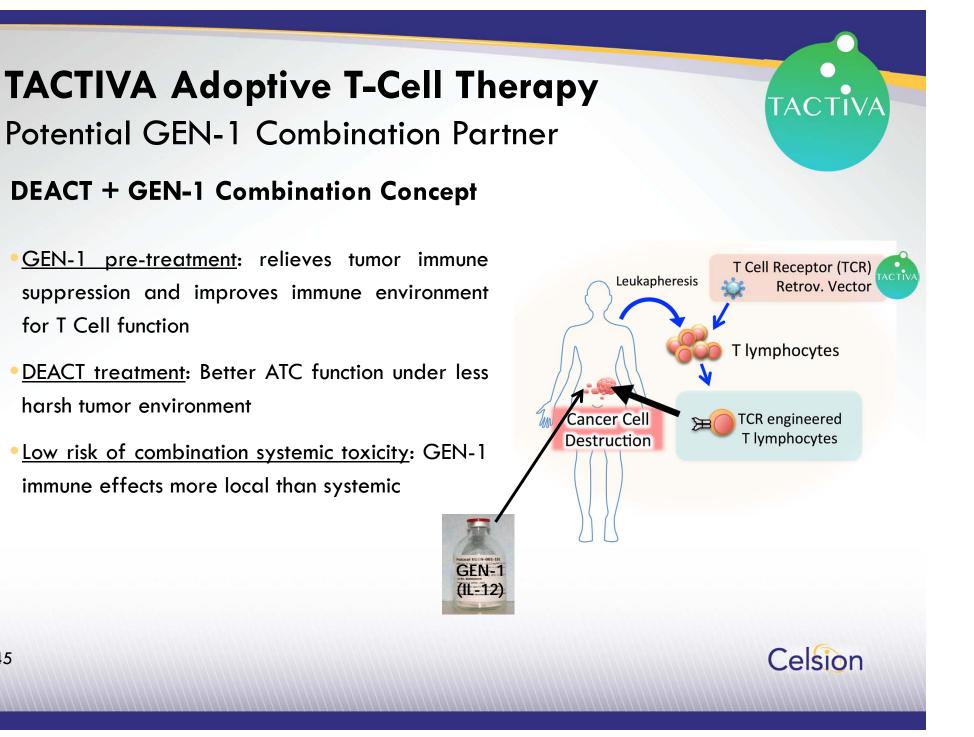
Adoptive T-Cell Therapy Potential GEN-1 Combination Partner

Adoptive T-Cell Therapy (ACT)


- Gaining Momentum as a Novel Cancer Treatment Approach
 - First product approval in Aug 2017; additional approvals in the pipeline
 - Gilead acquisition of Kite Pharma (Adoptive T Cell Therapy) for \$11.9 Billion in Aug 2017
- Technology
 - Patients' T-cells isolated
 - Engineered to provide anti-tumor specificity and killing; improve T-cell survival and immune function; re-administered into patient
- Key Limitations/Challenges
 - Poor ATCs persistence and function due to highly immunosuppressive tumor environment; may work better in a pro-immune tumor environment
 - Serious systemic toxicity from hyper immune stimulation

Celsion

Tactiva's Adoptive T-Cell Therapy Advantages Over Conventional T-Cell Therapies



- Developing Novel Adoptive T-cell Therapies for Cancer:
 - DEACT Technology: better than conventional ACTs; CD8⁺ & CD4⁺ combination
 - Increases persistence
 - Dual Adoptive Cell Therapy
 - Increases potency
 - Increases specificity

ΤΑΟΤΙν

Celsion-Tactiva Proposed Collaborative Study

Objective: Demonstrate benefit of GEN-1 + Tactiva DEACT TCR (NY-ESO-1) in a mouse ovarian cancer model

Animal Model

 Tg (HLA-A2.1)1EngeC57BI6 mouse with peritoneally disseminated ovarian cancer (developed at Roswell Park)

Reagents

•GEN-1 and Tactiva's DEACT TCR (NY-ESO-1) immunotherapies

Study Readouts

Tumor growth and animal survival

Immune parameters (T-cell function, cytokines, etc.)

ΤΑΟΤΙ

Today's Messages

- We are developing proprietary Drug Technologies that deliver known cancer treatments better and more effectively
- The Science behind our two clinical stage Drug Candidates is sound, if not incomparable. The evidence is clear: the mechanisms have been validated on the bench and in the clinic... our drugs work.
- The Clinical Data supporting our studies is without question. Challenged, tested, and peer reviewed published, our findings suggest transformational potential for patients and the medical community
- Our Research targets specific cancers of high incidence, typically in first line, where treatment options are limited. Where the potential return – in terms of health <u>and</u> wealth -- is greatest

Thank you for attending Celsion's R&D Day Celsion