

Corporate Presentation
May 2017

Safe Harbor Statement

This presentation and any statements made for and during any presentation or meeting contain forward-looking statements related to Celsion Corporation ("Celsion") under the safe harbor provisions of Section 21E of the Private Securities Litigation Reform Act of 1995 and are subject to risks and uncertainties that could cause actual results to differ materially from those projected.

These statements may be identified by the use of forward-looking words such as "anticipate," "planned," "believe," "forecast," "estimated," "expected," and "intend," among others. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. Such factors include, among other things, unforeseen changes in the course of research and development activities and in clinical trials; possible changes in cost, timing and progress of development, preclinical studies, clinical trials and regulatory submissions; Celsion's ability to obtain and maintain regulatory approval of any of its product candidates; possible changes in capital structure, financial condition, future working capital needs and other financial items; changes in approaches to medical treatment; introduction of new products by others; success or failure of our current or future collaboration arrangements, risks and uncertainties associated with possible acquisitions of other technologies, assets or businesses; the ability to obtain additional funds for operations; the ability to obtain and maintain intellectual property protection for technologies and product candidates and the ability to operate the business without infringing the intellectual property rights of others; the reliance on third parties to conduct preclinical studies or clinical trials; the rate and degree of market acceptance of any approved product candidates; possible actions by customers, suppliers, strategic partners, potential strategic partners, competitors and regulatory authorities; compliance with listing standards of The NASDAQ Capital Market; and those risks listed under "Risk Factors" as set forth in Celsion's most recent periodic reports filed with the Securities and Exchange Commission, including Celsion's Form 10-K for the year ended December 31, 2016.

While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Forward-looking statements included herein are made as of the date hereof, and Celsion does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances except as required by law.

Oncology Company

Capital Efficient Drug Development

Nanoparticle-Based Technology Platforms Driving Growth

Targeting Chemotherapy

Phase III Study in Primary Liver Cancer (The OPTIMA Study)

Phase II Study in RCW Breast Cancer (The Euro-DIGNITY Study)

Gene Mediated Immuno-Oncology

Phase I Neoadjuvant Therapy in 1st Line Ovarian Cancer (The OVATION Study)

Phase I/II Combination Therapy with Avastin 2nd line Ovarian Cancer

Our Two Clinical Stage Platforms

Lysolipid Thermally
Sensitive Liposomes
Known Chemotherapeutics

ThermoDox[®]

Targeted Doxorubicin Delivery

- Phase III Study Enrolling in HCC
- Phase II Study in RCW Breast Cancer

Synthetic Non-viral Vector
DNA Plasmids coded for
Therapeutic Proteins

GEN-1

Localized IL-12 Immunotherapy

Neoadjuvant Study in 1st Line Ovarian

Pipeline of Targeting Therapeutics

	INDICATION	PRODUCT CANDIDATE	PRE-CLINICAL	PHASE 3				
Clinical	Primary Liver Cancer	ThermoDox/OPTIMA Study			Phase III enrolling			
Ū	RCW Breast Cancer	ThermoDox /Euro-DIGNITY	Phase II initiating					
	Ovarian Cancer	GEN-1/OVATION Study	Phase I enrolling					
Pre-Clinical	MI Bladder Cancer	ThermoDox	Efficacy/Safety/Toxicology Complete					
Pre-(Glioblastoma	GEN-1	Efficacy/Safety	ficacy/Safety/Toxicology				

Chemotherapy

ThermoDox®

Celsion

Hepatocellular Carcinoma

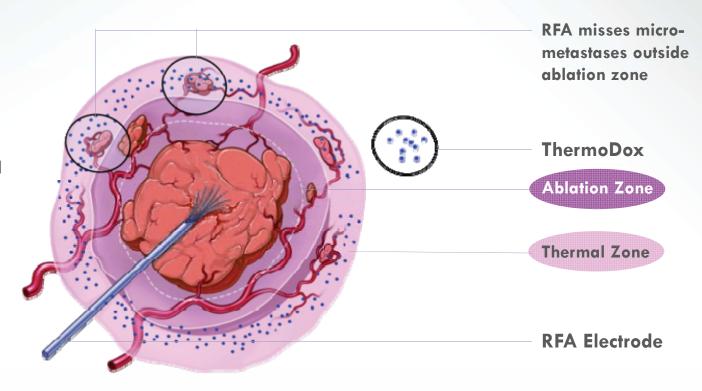
Large and Deadly Global Cancer

- 5th most prevalent
 - 800,000 global incidence growing 5% annually
 - By 2030, expected to be the #3 cancer
 - China has 50% of new cases; 75% in Asia

- 4th highest mortality
 - 5-year survival rate less than 10%
 - Median survival from time of diagnosis is less than 3 years¹
 - Curative surgery is approx. 20% of patients

Local therapies include:

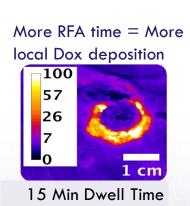
- RFA, TACE and radiation
- RFA is the dominant treatment with local recurrence rates >50% for lesions >3 cm
- ThermoDox + RFA
 addresses limitations of
 current standard of care
 by "Expanding the
 Treatment Zone"

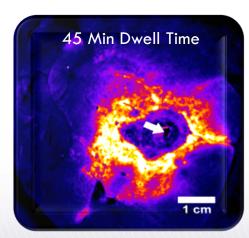

Market Opportunity > 200K Patients

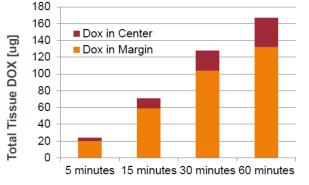
ThermoDox + RFAblation

Expanding the Treatment Zone to Address RFA's Limitations

- ThermoDox infused IV
 ~15 minutes prior to
 sRFA
- RFA ablates tumor and creates a "Thermal Zone" in margin surrounding the tumor
- Doxorubicin is released in the "Thermal Zone" expanding treatment area and killing the metastases outside the ablation zone


The Optima Study


Learnings from the 700 patient HEAT Study: RFA Dwell Time Matters

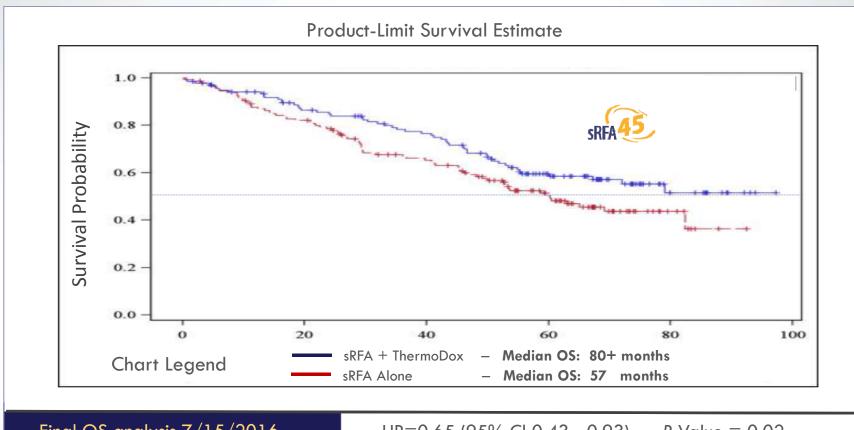

- Pre-specified analysis of HEAT Study data showed that patients with smaller lesions (3-5 cm) appeared to do better with ThermoDox
- When standardized for dwell time and lesion number, ThermoDox

patients demonstrated clear difference in Overall Survival

- The hypothesis that dwell time increases local doxorubicin concentration was demonstrated in a computational model
- The hypothesis was further tested and demonstrated in an in-vivo pig model:

Ablation Time

Multivariate analysis
 points to RFA dwell time
 with ThermoDox as the
 factor correlating to
 significant improvement in
 survival



ThermoDox: HCC

Sub-Group Analysis of HEAT Study Data

More than Two Years Overall Survival Benefit

285 Patients with Standardized RFA>45 minutes (sRFA)

Final OS analysis 7/15/2016

HR=0.65 (95% CI 0.43 - 0.93)

P Value = 0.02

RFA Dwell Time Matters

Independent Confirmation from NIH Analysis of HEAT Study Data

Evaluated RFA burn time per tumor volume (min/ml) for correlation with clinical outcome

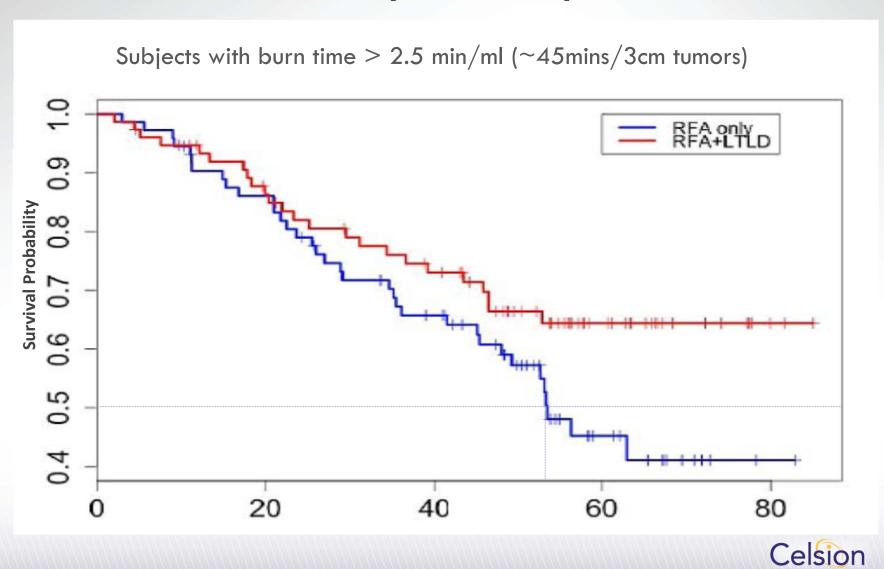
Overall Findings

Increase in burn time per tumor volume improves OS in ThermoDox + RFA patients compared to RFA only patients, n=437

For all single lesion RFA + ThermoDox patients:

One unit increase in RFA duration per tumor volume improved OS by 20% (p=0.017, n=227)

- More dramatic differences in subgroup of patients with RFA burn times per tumor volume > 2.5 minutes/ml
- Cox multiple covariate analysis showed OS to be significant (p=0.038, HR=0.85)



• For all single lesion RFA-only patients:

Burn time per tumor volume did <u>not</u> have a significant effect (p=0.57, n=210)

NIH Confirms HEAT Study Sub-Group

ThermoDox + RFA vs TACE

Intermediate HCC

Study	Lesion size	N	Median OS (mos.)	Year 1 (%)	Year 2 (%)	Year 3 (%)
HEAT Study ITT Population	Mean: 4.7 cm		53 mos.	85%	76%	64%
ThermoDox + RFA ≥ 45 min.	Overall: 2.7 - 6.9 cm Mean: 4.3 cm Median: 4.2 cm	138	80+ mos.	94%	85%	77%
RFA alone time ≥ 45 min.	Overall: 3 - 6.9 cm Mean: 4.2 cm Median: 3.9 cm	147	57 mos.	88%	79%	69%
lkeda et al (TACE)	Median: 3.9; range 1-11	99	37 mos.	90%	75%	NR
2013	> 3.0	64	NR	NR	66%	NR
Burrel (DEB TACE)	BCLC A	41	54 mos.	90%	NR	68%
2012	BCLC B	63	48 mos.	88%	NR	64%

HEAT Study Subgroup

The Clinical Management of Hepatocellular Carcinoma in the United States, Europe, and Asia

A Comprehensive and Evidence-Based Comparison and Review

Zhi Ven Fong, MD; and Kenneth K. Tanabe, MD

Hepatocellular carcinoma (HCC), the most common primary malignancy of the liver, represents 1 of the leading causes of cancer deaths in the world with an estimated 21,670 deaths in the United States in 2013. In contrast to other malignancies, there is an array of treatment options for HCC involving several specialties in the multidisciplinary care of the patient. Consequently, vast heterogeneity in management tendencies has been observed. The objective of this report was to review and compare guidelines on the management of HCC from the United States (National Comprehensive Cancer Network), Europe (European Association for the Study of the

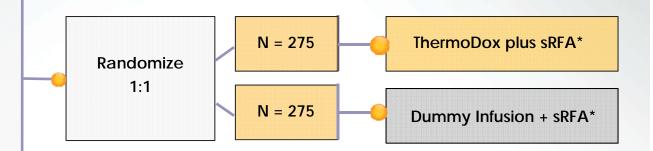
TABLE 5. Survival Outcomes 3 Years After Surgical Resection and Radiofrequency Ablation of Hepatocellular Carcinoma Based Dichotomized Based on Tumor Size

Cancer September 15, 2014

	3-Year OS Rate, %			3-Year DFS Rate, %			
Tumor Size, cm	Resection	RFA	P	Resection	RFA	Р	
≤3 >3	79 59	50 24	NS .007	67 43	34 12	NS .003	

Abbreviations: DFS, disease-free survival; NS, nonsignificant; OS, overall survival; RFA, radiofrequency ablation.

HEAT Study showed 3-Year OS Rate of 77% (July 2015)


Phase III OPTIMA Study Design

General Eligibility

- Non-resectable HCC
- Single lesions
- Lesion > 3 cm but not > 7 cm
- Treatment naïve
- Child-Pugh A

Stratification

- Lesion size: 3-5 cm / 5-7 cm
- RFA Technique (Percutaneous, Laparoscopy, or Surgical)

Primary Endpoint Secondary Endpoints	Overall Survival (OS) Progression Free Survival; Safety					
Secondary Enapoints	Frogression free Sorvival; Safety					
Interim Efficacy Analysis	118 OS Events / HR < 0.61					
miermi Erricacy / marysis	158 OS Events / HR < 0.70					
Final Efficacy	197 OS Events / HR < 0.75					

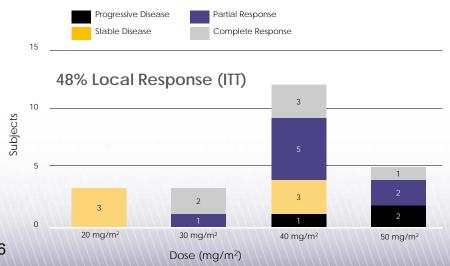
First Patient Enrolled Q3 – 2014

~ 65 Clinical Sites in 14 Countries

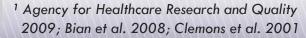
ThermoDox for RCW Breast Cancer

Difficult to Treat with Severe Complications

- Breast cancer recurring in the chest wall affects
 ~35,000 post-mastectomy patients in the US and
 Europe annually¹
- Up to 40% of women undergoing a mastectomy as primary treatment will experience local recurrence
- Local tumor control is a primary objective in treating these patients


Limited Treatment Options

Complete Response


Combined Phase 1 Data (n = 29)

Phase 2 US DIGNITY Study

Evaluate local-regional breast tumor response. 17 patients enrolled; 12 evaluable for efficacy

- All evaluable patients experienced stabilization of disease; 67% of patients in evaluable population observed local responses - 5 CRs & 3 PRs
- 47% Local Response (ITT)

ThermoDox: Euro-DIGNITY Study

ThermoDox + Hyperthermia + Radiation

Primary Objectives

Evaluate complete and partial response after 3 cycles of ThermoDox +
 Hyperthermia and Radiation Treatment (Tri-Modal Therapy)

Evaluate loco-regional breast tumor control in patients undergoing


Tri-Modal Therapy

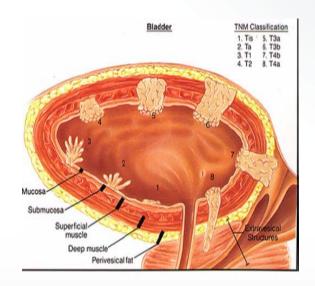
70 patients to be enrolled

Open Label Design

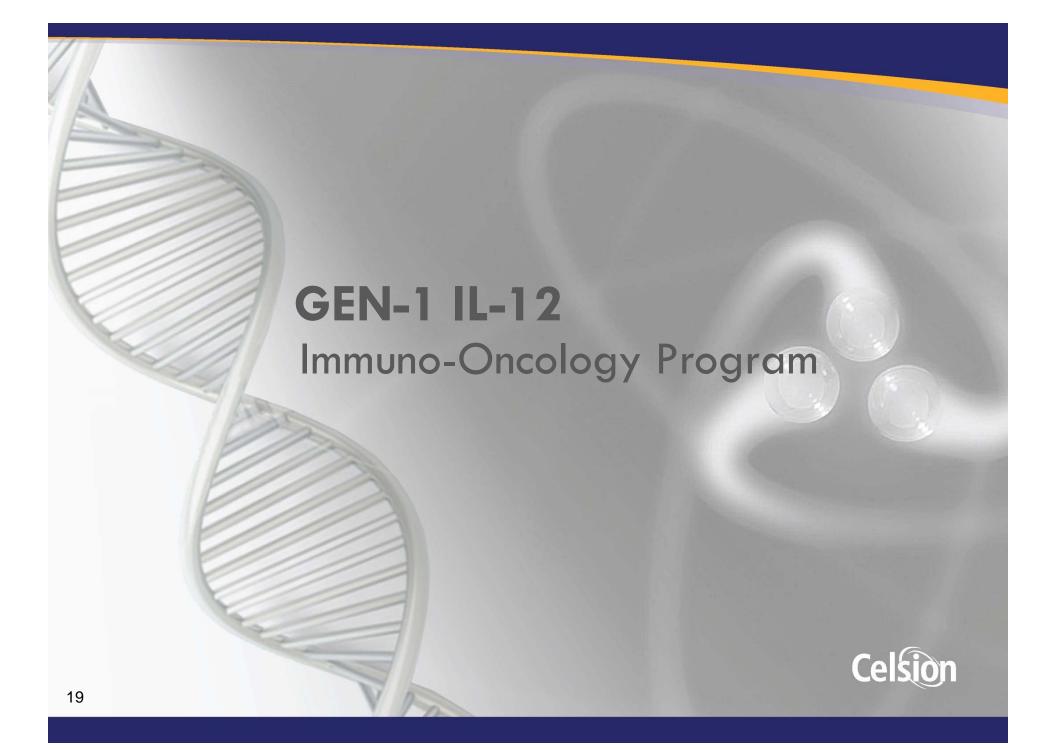
Study Timelines

- Site Activation: Pending
- Expected Recruitment Period:
 H2-2017 through 2018

ThermoDox for Bladder Cancer

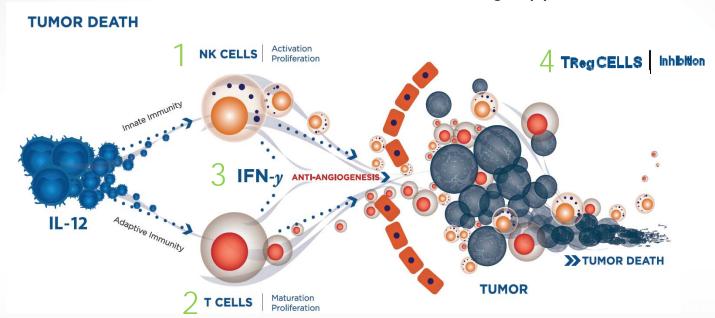

Preclinical Studies at Duke University and the NIH

79,000 new cases and 16,800 deaths in the U.S. (2015)


- 70% of new cases are non-muscle invasive
- Incomplete response of bladder tumors to intravesical drugs. like doxorubicin,
 has been attributed to inadequate drug delivery

Two independent preclinical studies conducted by Duke University and National Institutes of Health

- ThermoDox delivers doxorubicin at 10x that of free dox and at levels well above required therapeutic effects
- Minimizes unwanted drug delivery to other organs
- Heat-targeted drug delivery has the potential to make systemic chemotherapy more effective while improving safety

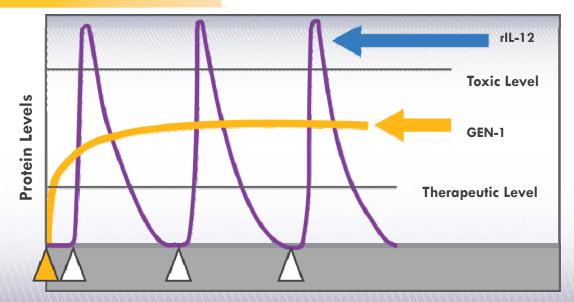

IL-12

A Powerful Immune Modulating Agent; Multiple Mechanisms

Mechanisms of Action

- 1. NK Cell Activation
- 2. T Cell Activation

- 3. Anti-angiogenesis
- 4. T Reg suppression


GEN-1

Novel Polymer-Plasmid DNA Nanoparticle

Rationale for Local Therapy with GEN-1 DNA Nanoparticles

- Loco-regional production of potent cytokine IL-12 avoid toxicities and poor pK associated with systemic recombinant IL-12
- Persistent local delivery of IL-12 lasts up to one week and dosing can be repeated
- Ideal for long-term maintenance therapy

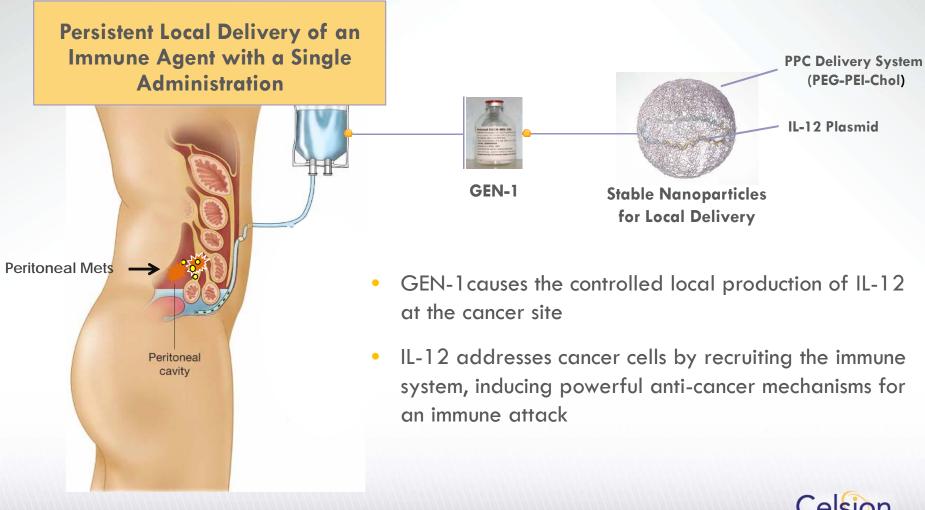
GEN-1 is an Effective Alternative to rIL-12 Poor pK

100 nm

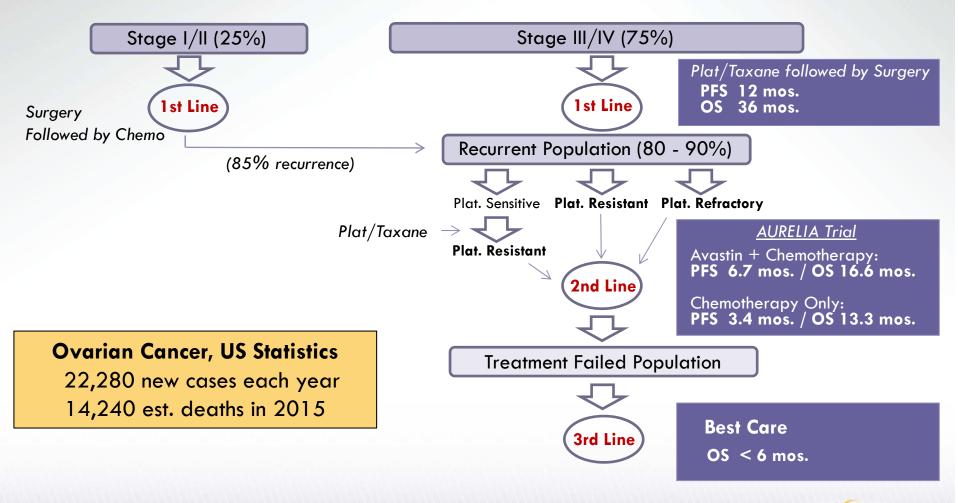
Ovarian Cancer

Large and Deadly Global Cancer

- 8th most diagnosed cancer among women
 - 225,000 annual incidence worldwide
 - 22,280 in US and 100,000 in developed countries
 - 14,240 deaths in 2015

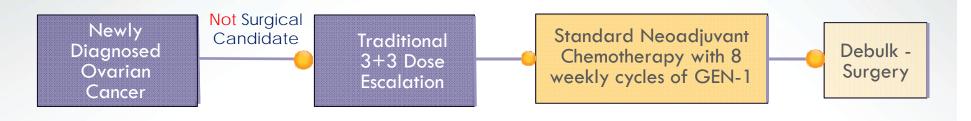

- 5th highest mortality among women
 - 5-year survival rate for all stages is >50%
 - Survival rate reduces dramatically if not localized cancer
 - 15% diagnosed with localized cancer, eligible for potentially curative surgery

- Local therapies for ovarian cancer
 - Ovarian cancer is not diagnosed early - spreads to regional/mets requiring combo regimens
 - Most common site of recurrence in abdomen importance of intraperitoneal administered therapy
 - GEN-1 administered IP;
 ideal adjuvant to SoC
 therapy



GEN-1 for Ovarian Cancer

Local Immunotherapy


Ovarian Cancer Treatment Path

GEN-1Phase I Study

1st Line in Ovarian Cancer

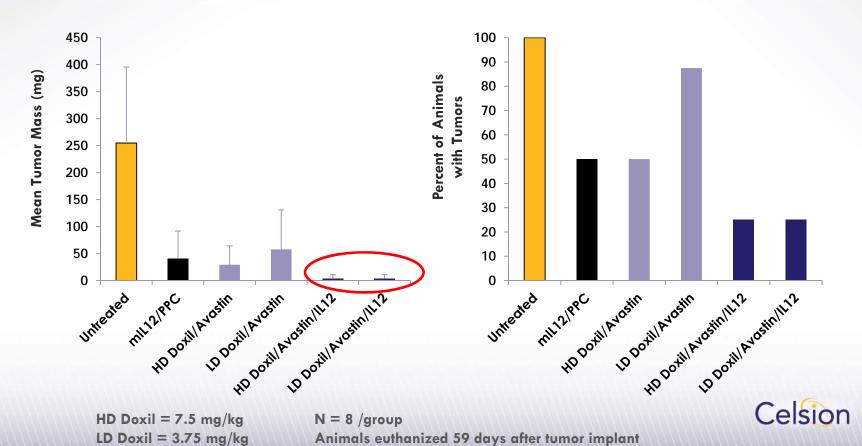
The OVATION Study

Neoadjuvant Study in Newly Diagnosed Ovarian Cancer Patients	To determine safety, dose, and feasibility in target patient population
Primary Endpoint	Optimal Therapeutic Dose
Secondary Endpoints	pCR, PFS, ↑IFNγ, ↑IL-12, ↓VEGF and Tumor-specific T-cell response CD4+,CD8+

OVATION Study

Totality of Results in the First Four Patient Cohorts, n=12

- 1st 12 patients dosed, there has been a
 - 100% disease control rate (DCR)
 - 75% objective response rate (ORR)
- Of the 11 surgically resected patients:
 - All patients had successful resections of their tumors
 - One patient demonstrated a complete pathological response (PCR) ¹
 - 55% of patients had a RO (margin negative) resection
- Of the 5 treated (so far) at the highest doses, all were RO
- All patients show a greater than 90% drop in their CA-125 protein levels ²
- Ratio of CD8+/FoxP3+ cells was increased in all four evaluable patients demonstrating a potential shift in tumor environment to favoring immune stimulation following NACT + GEN-1 therapy


In a 332 patient GOG Study, cPR's were seen in < 6.5% of patients; Strong correlation with improvement in Overall Survival (median OS of 72 mos.) which is a 3 year improvement over patients having a microPR or macroPR (Pvalue = 0.018)

² 50% reduction in CA-125 levels from baseline that is maintained for > 2 weeks is considered a CA-125 Responder

GEN-1: Preclinical Studies

GEN-1 + Doxil + Avastin

- Doxil + Avastin is 2nd line SoC for platinum-resistant ovarian cancer.
- Adding Avastin Results in a > 98% Reduction in Tumor Burden

GEN-1 + Doxil Phase 1b Trial

2nd Line

GEN-1 (mg/m ²)	Doxil (mg/m²)
24	40
36	40
36	50

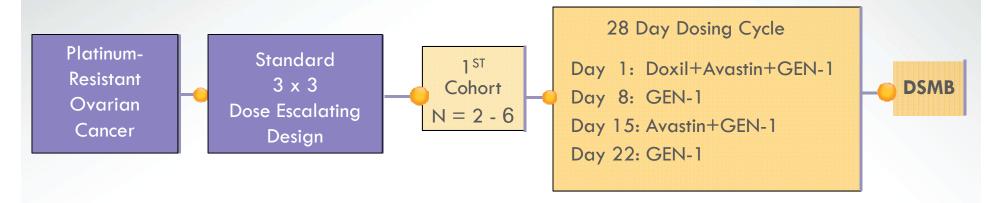
Clinical Observations

- All doses well tolerated with no DLTs
- Clinical response rate:
 - All doses: > 50%
 - Highest dose: 86%
- Single agent Doxil comparison 4 previous studies:
 - Clinical RR < **50**%

Translational Data Findings

Significant increase in immunologically active IL-12 levels in peritoneal fluid

- Detectable for at least one week after GEN-1 dosing
- Not detectable or very low in plasma


Significant increase in key downstream mediators of IL-12

- IFN- γ and TNF- α : ~ 5 -fold increase observed in peritoneal fluid above pretreatment level with the highest increase observed at 77-fold
- Very low to non-detectable levels of IFN γ and TNF- α in plasma

GEN-1+Avastin and Doxil Trial Design

2nd Line

Primary Endpoint Phase I Primary Endpoint Phase II	Optimal Safe Dose (Max or MTD) Clinical Objective Tumor Response (RECIST)
Secondary Endpoint	IL-12, IFN-γ, TNF-α, VEGF
Treatment period	28 day cycles continue until GEN-1 or Avastin treatment is no longer tolerated

Milestone Events (2016 - 2018)

	2016			2017			2018					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
ThermoDox												
		Initiate	HEAT Study	NIH						OPTIMA		1 st Interim
OPTIMA		Enrollment in		resentation at	OPTIMA	1				Enrollment		Efficacy
STUDY		China 🗸	(China cohort)	RSNA √	50% Complete	$\sqrt{}$				Complete		Endpoint
										1 st Efficacy		
Euro-DIGNITY								Initiate		Assessment		Enrollment
STUDY								Enrollment		(24 pts)		Complete
GEN-1												
			Translational									
		Efficacy Data	Research Data	Efficacy Data	Efficacy Data	Final Efficacy &						
OVATION		from	from	from	from	TR Data from						
STUDY		Cohorts 1 & 2	Cohorts 1 & 2	Cohort 3	Cohort 4√	Cohorts 1-4						
	TR Data from											Efficacy & TR
Avastin+Doxil		Pre-Clin Data at						Submit IND for	Initiate			data from
Study	Ovarian Study	AACR 1						Ph 1/2 Study	Enrollment			Phase 1
RNA												
Delivery			,									
		Pre-Clin Data	$\sqrt{}$									
		(Collaboration					Potential Co-					
		w/ RNA					Development					
Lung Cancer		company					Collaboration					

Financial Overview

Cash & Investments (3/31/17)

\$4.5 million

Estimated cash usage per month

~\$1.33 million

Market Capitalization

\$13 million

Common shares outstanding

4 million

Fully diluted shares outstanding

6.1 million

Avg Daily Trading Volume

> 2 million

Celsion Corporation

997 Lenox Drive

Suite 100

Lawrenceville, NJ 08648

P 609-896-9100

F 609-896-2200

www.celsion.com

NASDAQ: CLSN

