Ovarian Cancer: New Horizons and Treatments

Premal H. Thaker, M.D. Director of Gynecological Oncology Clinical Research Professor in Gynecologic Oncology Washington University School of Medicine

Advisory Board: Celsion, Genentech, Iovance, Eisai, Stryker, Genelux, Unleash Oncolytics, Immunogen, Tesaro, Astra Zeneca, Merck

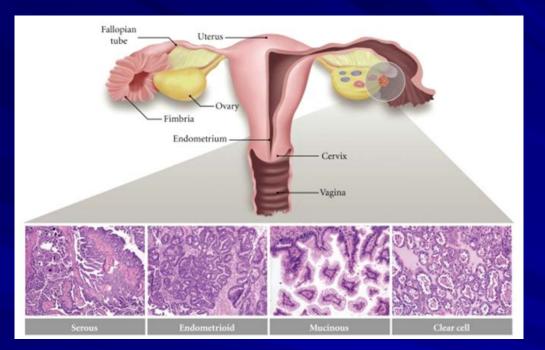
Speaker's bureau: Tesaro and Merck

Institutional Grant: Merck and Tesaro

Symptoms and Diagnosis

Standard of care therapy: surgery and neoadjuvant chemotherapy

Novel therapies

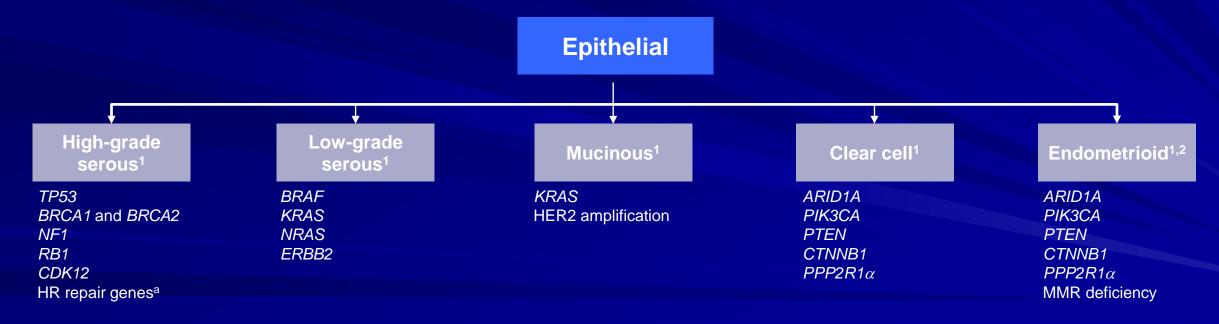

- Anti-angiogenic
- PARP inhibitors
- Immunotherapy

2019 US Estimates *

Women	New Cases		Deaths				
	891,480		285,210				
	30%	Breast	23%	Lung & bronchus			
	13%	Lung & bronchus	15%	Breast			
	7%	Colon & rectum	8%	Colon & rectum			
	7%	Uterine corpus	8%	Pancreas			
	5%	Melanoma	5%	Ovary			
	4%	Non-Hodgkin lymphoma	4%	Uterine corpus			
	4%	Thyroid	4%	Liver & bile duct			
	2.5%	Ovary	3%	Non-Hodgkin lymphoma			
	3%	Pancreas	3%	Leukemia			
	3%	Leukemia	3%	Brain & other nervous system			
	21.5%	All Other Sites	24%	All Other Sites			

*Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder. Source: American Cancer Society, 2019.

US 5 Yr. Relative Survival Rates (%) from 2007-2013



	All Subtypes	Serous	Endometrioid	Mucinous	Clear Cell
All stages	47	44	82	69	67
Localized	93	90	98	93	90
Regional	74	75	87	81	74
Distant	30	35	48	18	26

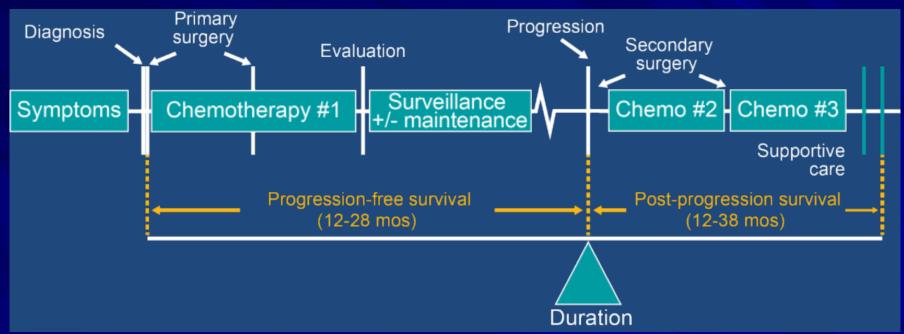
American Cancer Facts & Figures 2018

Epithelial Ovarian Cancer Subtypes Are Associated With Different Mutations and Molecular Aberrations

Epithelial ovarian cancer can be characterized as a heterogeneous disease, not only histologically, but through identification of distinct molecular pathway alterations

CHK2, BARD1, BRIP1, PALB2, RAD50, RAD51C, ATM, ATR, EMSY, and Fanconi anemia genes.

HR, homologous recombination; MMR, mismatch repair.


1. Banerjee S, et al. *Clin Cancer Res.* 2013;19(5):961-8. 2. McConechy MK, et al. *Mod Pathol.* 2014;27(1):128-34.

Lifetime Risk of Cancers Associated With Specific Genes

Cancer, %	BRCA1	BRCA2	MMR*
Breast	35-60	30-55	0
Ovarian	35-45	15-25	6-20
Endometrial	0	0	40-60

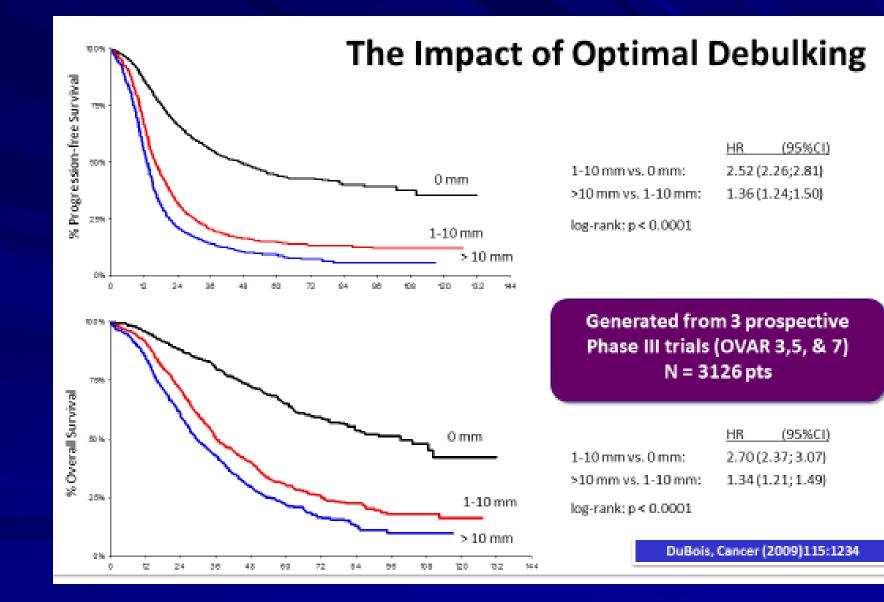
*MMR (mismatch repair) = HNPCC.

Treatment Landscape Overview for Advanced Ovarian Cancer

- Surgical goal is complete cytoreduction of all macroscopic visible disease¹
- Standard adjuvant chemotherapy is an IV or IP taxane/platinum combination¹
- Despite optimal upfront surgery and adjuvant chemotherapy, approximately 80% of patients will relapse²
- Unknowns: maintenance therapy, antiangiogenic therapy, role of IP therapy, and dose-dense schedule

EOC, epithelial ovarian cancer; IV, intravenous; IP, intraperitoneal. Image curtesy of Dr. Robert Coleman

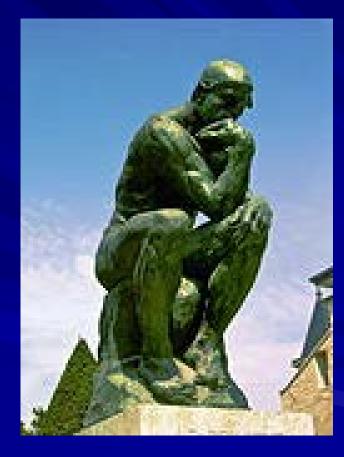
8 1. Ledermann et al. Ann Oncol. 2013;24 Suppl 6:vi24-32.
2. du Bois. Cancer. 2009;115(6):1234-44.


Surgical Cytoreduction

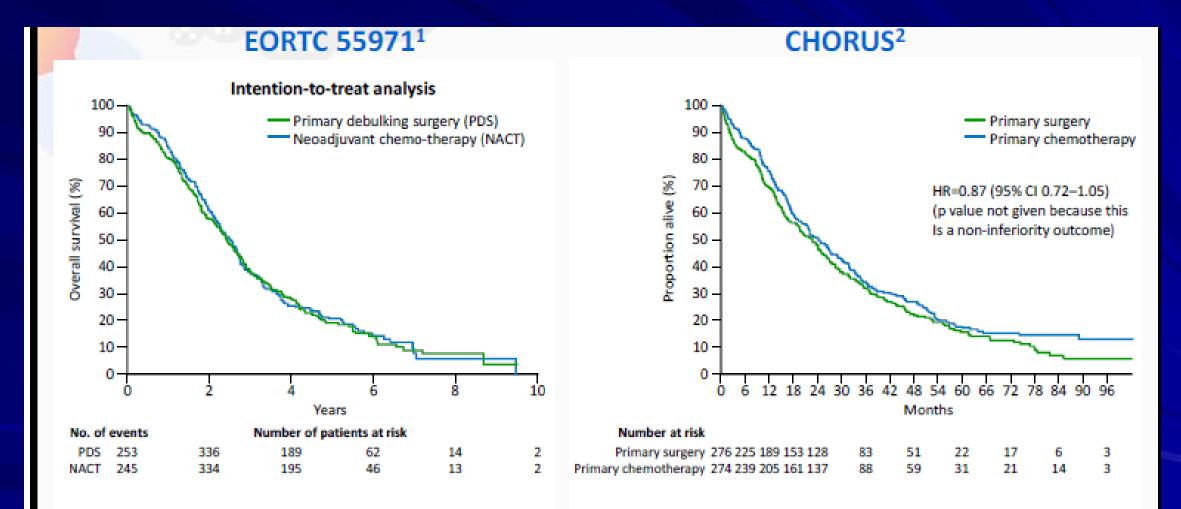
Adequate Surgery is Vital in Treating Ovarian Cancer

Maximal effort at primary cytoreduction

- Goal is R0 (complete resection = optimal)
- Imaging and perhaps laparoscopy to assess feasibility
- Decision requires gynecologic oncology input
- 3 cycles of neoadjuvant chemotherapy and interval debulking in unique circumstances
 - 1. Infirm and elderly unlikely to tolerate extensive surgery
 - 2. Carcinomatosis where R0 is unlikely



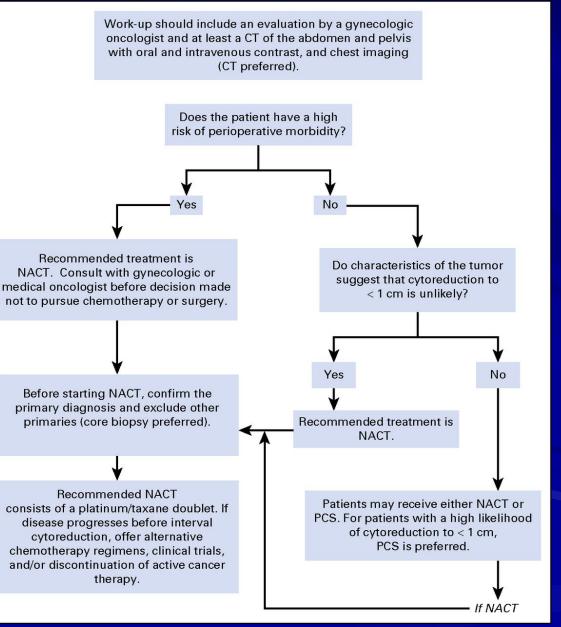
Laparoscopic Predictive Index


Table 2 Laparoscopic predictive index value to determine disease distribution ⁵¹								
Tumour site distribution	Laparoscopic predictive index score = 2	Laparoscopic predictive index score = 0						
Peritoneal carcinomatosis	Unresectable massive peritoneal involvement plus miliary pattern of distribution	Carcinomatosis involving a limited area surgically removable by peritonectomy						
Diaphragmatic disease	Widespread infiltrating carcinomatosis or confluent nodules to most of the diaphragmatic surface	Isolated diaphragmatic disease						
Mesenteric disease	Large infiltrating nodules or involvement of the root of the mesentery assumed based on limited movements of various intestinal segments	Small nodules potentially treatable with argon-beam coagulation						
Omental disease	Tumour diffusion up to the large curvature of the stomach	Isolated omental disease						
Bowel infiltration	Bowel resection assumed to be required or miliary carcinomatosis at the mesenteric junction	No bowel resection required and no miliary carcinomatosis at the mesenteric junction						
Stomach infiltration	Obvious neoplastic involvement of the gastric wall	No obvious neoplastic involvement of the gastric wall						
Liver metastasis	Any surface lesions	No surface lesions						

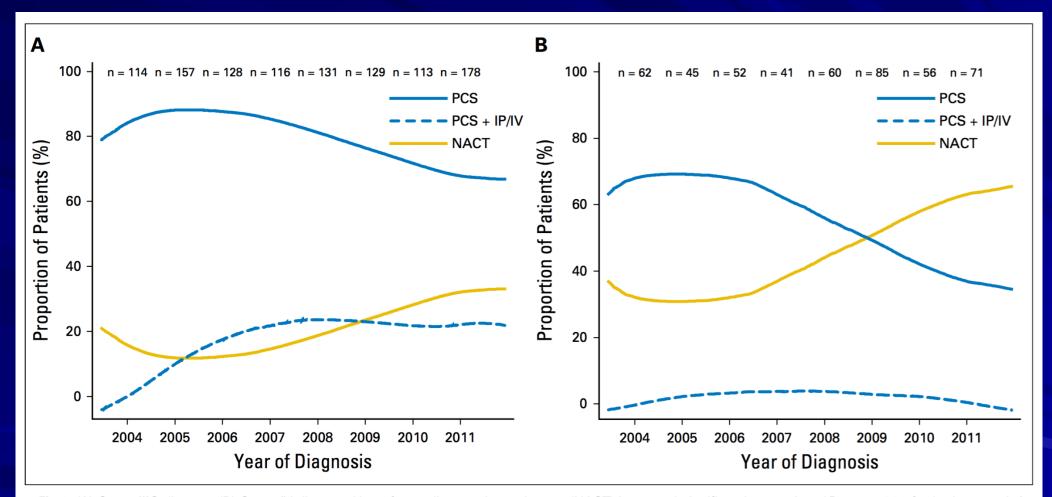
Nick, A. M. *et al.* (2015) A framework for a personalized surgical approach to ovarian cancer *Nat. Rev. Clin. Oncol.* doi:10.1038/nrclinonc.2015.26

CHEMOTHERAPY VS SURGERY?

Design of 2 Phase III Trials Addressing NACT

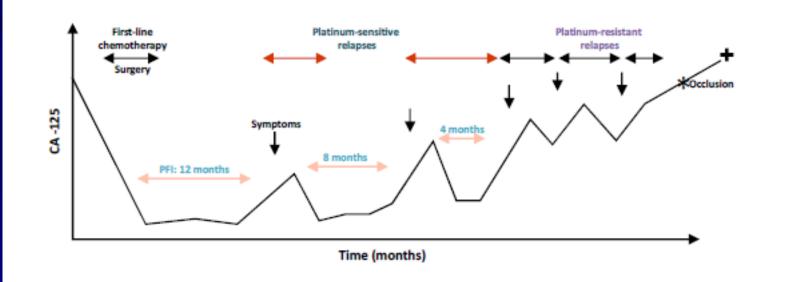


*Definition of successful surgery: maximum effort for complete resection of visible tumour


1. Vergote, et al. NEJM 2010; 2. Kehoe, et al. Lancet 2015

Algorithm for the clinical evaluation and treatment of women with suspected stage IIIC or IV epithelial ovarian cancer, fallopian tube cancer, or primary peritoneal cancer.

ASCO & SGO Guidelines August 2016



NACT Trends

Fig 1. (A) Stage IIIC disease. (B) Stage IV disease. Use of neoadjuvant chemotherapy (NACT) increased significantly over time ($P_{trend} < .001$ for both groups). Intraperitoneal and intravenous (IP/IV) chemotherapy is shown for comparison. Three patients with stage IIIC disease and one with stage IV who were diagnosed in 2003 are included in the estimate for 2004. Twenty-three patients with stage IIIC disease and seven with stage IV who were diagnosed in 2012 are included in the estimate for 2011. PCS, primary cytoreductive surgery.

STANDARD OF CARE THERAPY

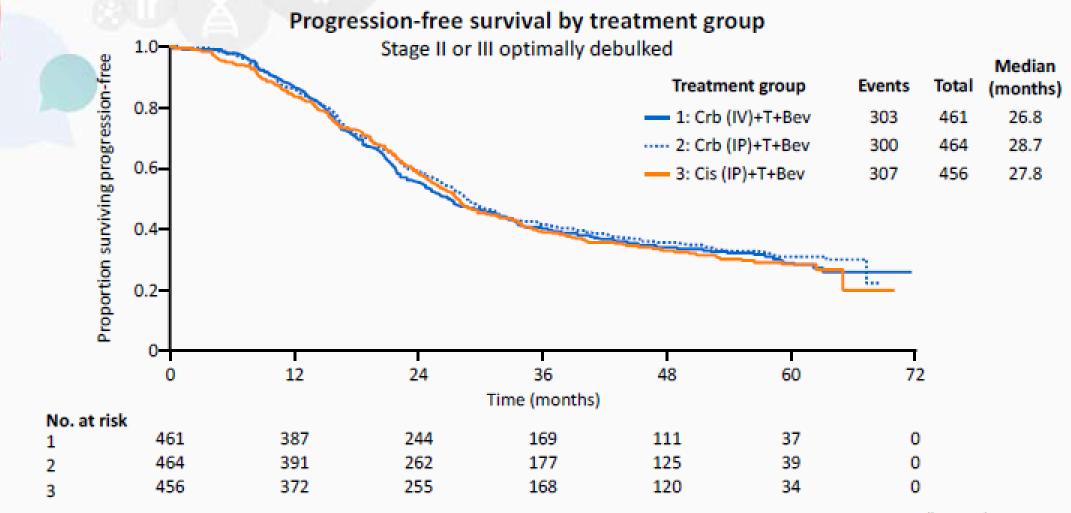
Chemotherapy choices: intraperitoneal therapy improves OS, but toxicity is increased

62311					Manual and a
and the second				azard ratio IV, Fixed,	Hazard ratio
Study or Subgroup	log [Hazard ratio]	SE	Weight	95% CI	IV, Fixed, 95% CI
1.1.1 High quality trials					
Alberts 1996	-0.2744	0.1157	23.9%	0.76 [0.61, 0.95]	
Gadducci 2000	-0.4025	0.2776	4.2%	0.67 [0.39, 1.15]	· · · · · · · · · · · · · · · · · · ·
GOG 172	-0.2877	0.1312	18.6%	0.75 [0.58, 0.97]	
Markman 2001	-0.2107	0.1099	26.5%	0.81 [0.65, 1.00]	
Yen 2001	0.1222	0.253	5.0%	1.13 [0.69, 1.86]	
Yen 2009	-0.163	0.13	18.9%	0.85 [0.66, 1.10]	
Subtotal (95% CI)			97.1%	0.80 [0.72, 0.90]	◆
Heterogeneity: Chi2 = 2.95, d	$f = 5 (p = 0.71); l^2 = 0\%$				
Test for overall effect: Z = 3.8					
1.1.2 Low quality trials					
Kirmani 1994	0.2175	0.3508	2.6%	1.24 [0.62, 2.47]	,
Zylberberg 1986	-1.227	1.1249	0.3%	0.29 [0.03, 2.66]	·
Subtotal (95% CI)			2.9%	1.09 [0.57, 2.11]	
Heterogeneity: Chi2 = 1.50, d	$if = 1 (p = 0.22); l^2 = 33\%$				
Test for overall effect: Z = 0.2					
Total (95% CI)			100.0%	0.81 [0.72, 0.90]	◆
Heterogeneity: Chi ² = 5.29, d	If = 7 (n = 0.62)-12 = 0%				
Test for overall effect: Z = 3.1					0.5 0.7 1 1.5 2
	s: Chi ² = 0.85, df = 1 (p = 0.36),	12 - 094			
rest for subgroup unterence	s. ciii 0.65, ui - 1 (p = 0.36),	1 070			Favours IP Favours IV

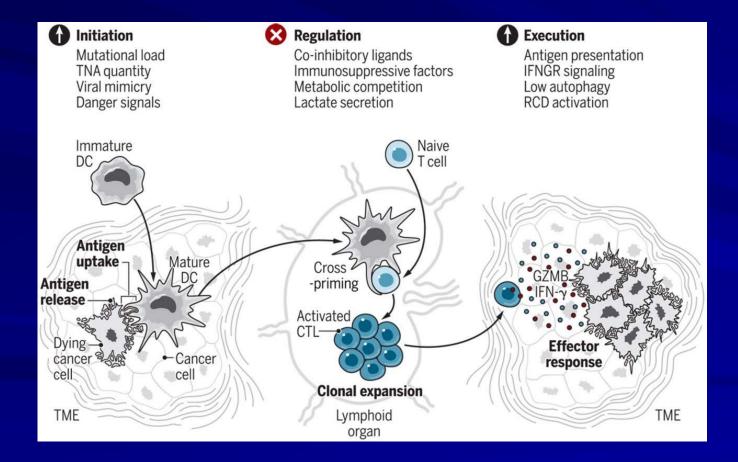
- However, use is limited by delivery issues and toxicity
- In GOG-0172, only 42% of patients received all 6 cycles of intraperitoneal chemotherapy²

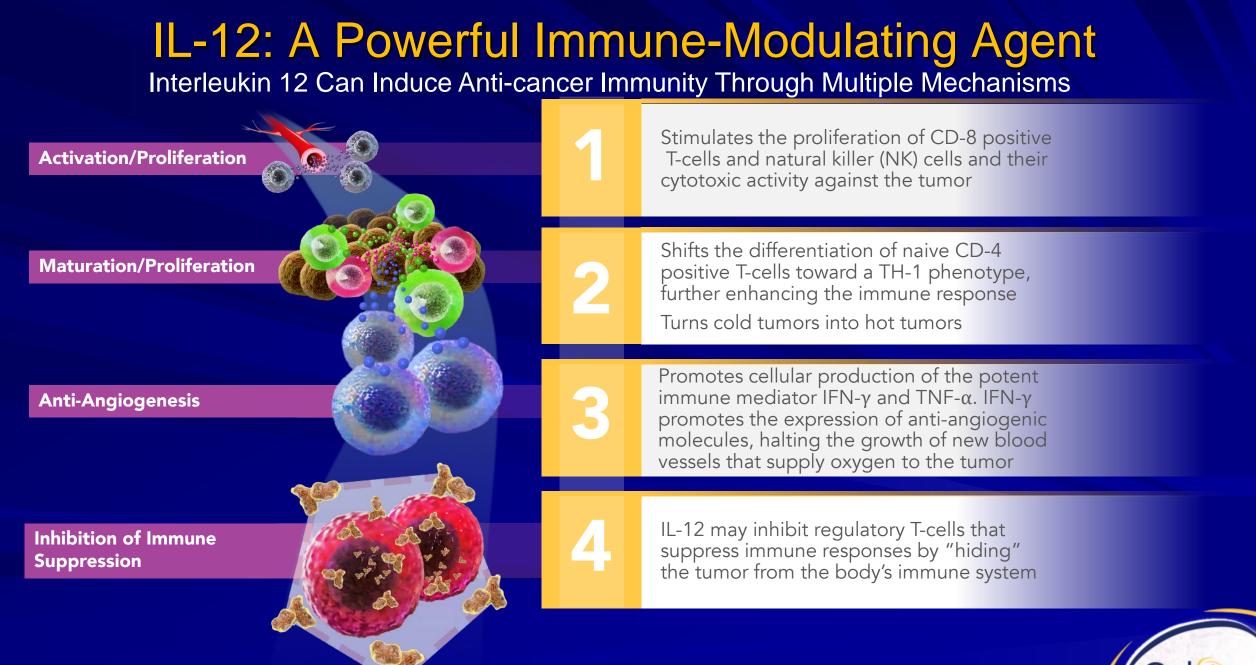
1. Jaaback, et al. Cochrane Database System Rev 2016; 2. Armstrong, et al. N Engl J Med 2006

Addition of HIPEC to Interval Cytoreductive Surgery Improves Outcomes in Advanced Ovarian Cancer


- Intraperitoneal chemotherapy during surgery delivered under hyperthermic conditions is termed HIPEC
 - Hyperthermia increases penetration of chemotherapy at the peritoneal surface and is thought to increase chemosensitivity by interfering with DNA repair
- A recent randomized phase 3 study investigated whether HIPEC with cisplatin improved outcomes in patients with stage III epithelial ovarian cancer who had at least stable disease after 3 cycles of neoadjuvant carboplatin + paclitaxel
- Addition of HIPEC to interval cytoreductive surgery resulted in longer mRFS and mOS
 - HIPEC did not result in increased rates of side effects and did not affect health-related QoL

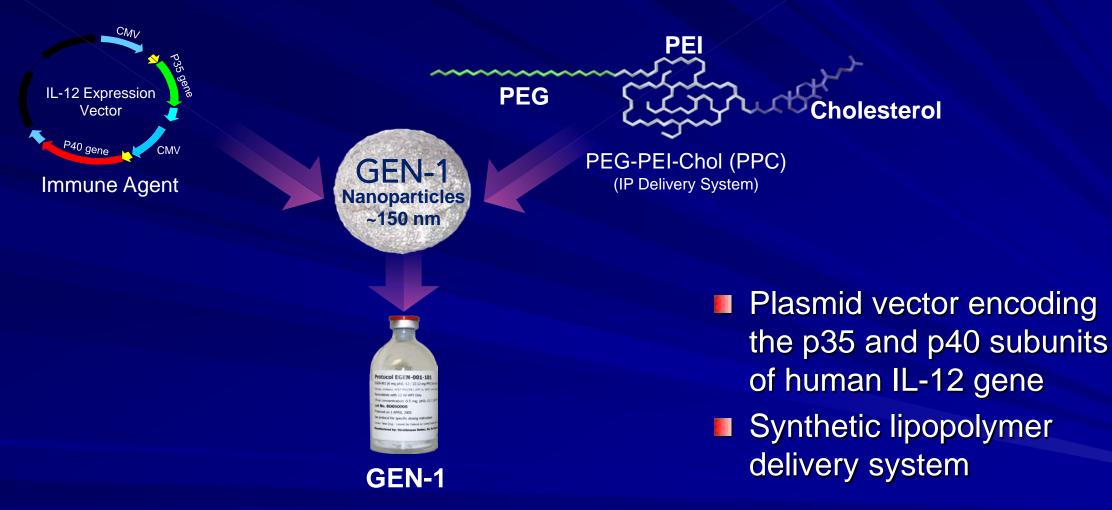
Endpoint	Surgery Alone (n=123)	HIPEC + Surgery (n=122)					
mRFS, mo (95% CI) ^a	10.7	14.2					
HR (95% CI)	0.66 (0.50–0.87), <i>P</i> =0.003 ^b						
mOS, mo (95% CI) ^c	33.9 45.7						
HR (95% CI)	0.67 (0.48–0.94), <i>P</i> =0.02 ^b						
Grade 3/4 AEs, %	25	27					


^a Primary endpoint. ^b Stratified *P* value. ^c Secondary endpoint.


AE, adverse event; CI, confidence interval; HIPEC, hyperthermic intraperitoneal chemotherapy; HR, hazard ratio; mOS, median OS; mRFS, median relapse-free survival; OS, overall survival; QoL, quality of life. van Driel WJ, et al. *N Engl J Med.* 2018;378(3):230-40.

GOG 252: PFS optimal stages II & III

IMMUNOTHERAPY


Clinical Experience with rhlL-12

Hurteau et al.

- GOG trial of recombinant human IL-12 in recurrent platinum resistant or refractory ovarian cancer
- rhIL-12 250 ng/kg IV bolus on D#1 followed by a 2 week rest period, with subsequent daily dosing x 5 days
- 26 evaluable patients with median of 2 cycles:
 1 PR, 13 SD
- Grade 4 myelotoxicity of 21% *Gynecol Oncol* 2001;82(1):7-10.

GEN-1: Designed for IP Administration

GEN-1 intraperitoneally (IP) produces durable local levels of IL-12 and related cytokines after a single injection and is delivered safely for several weeks for modulation of TME

GEN-1 Design Concepts

- PEI condenses DNA into nanoparticle to escape endosomes
- Cholesterol is designed to facilitate uptake by cellular membrane
- PEG improves in vivo stability (weekly dosing)

IP catheter (SC)

Protocol EGEN-001-101 EGEN-001 [6 mg phIL-12 / 22.12 mg PPC] to the Strape condenses: KEEP FROZEN (-20°C to -80°C) use will Reconstitute with 12 ml WFI Only (final concentration 0.5 mg phIL-12/18¹¹ Lot No. BDOSODOG Produced on 1 APRIL 2005 See protocol for specific dosing instructions Calter: then Orng - Limited by Federal (or Limited State)¹⁶ Nastinctured by: Strathmann Blotec, A6, for for

GEN-1

Peritoneal Mets (Ovarian/Primary)

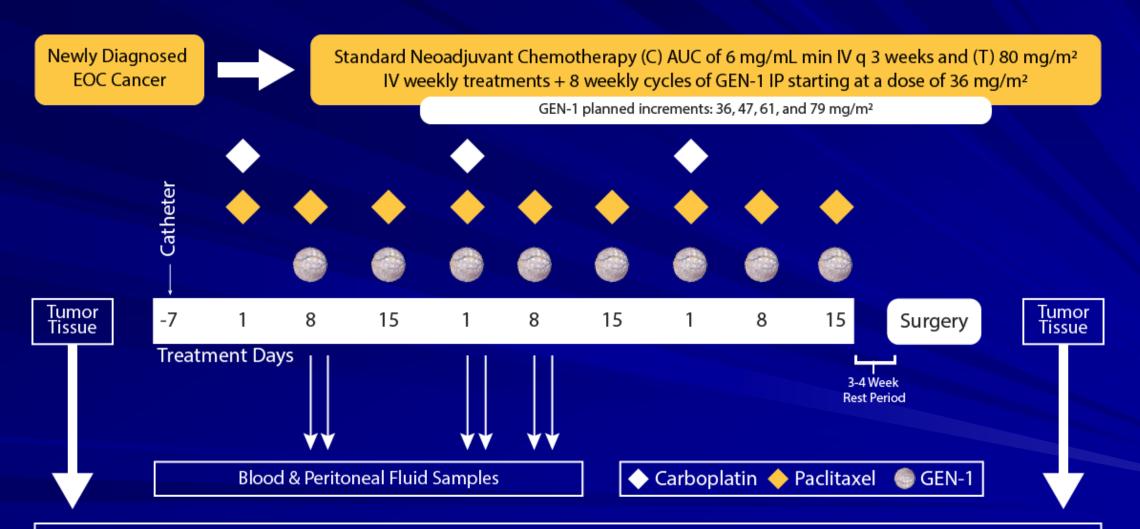
Peritoneal cavity

Rationale for GEN-1 in Newly Diagnosed Ovarian Cancer Patients

Relatively healthier immune system than recurrent population

- Tumor and immune system naïve to any cancer therapy

Accessibility to primary tumor tissue for translational studies


- Neoadjuvant population allows for examining tissue before and after treatment
- Better prospects of generating comprehensive translational data and understanding biological response to dose escalation

Hypothesis:

- GEN-1 when added to standard doublet chemotherapy may stimulate a potent immune response in ovarian cancer patients
 - Resulting in improved R0 resection rates
 - Reduced immunosuppression in the tumor microenvironment
 - Enhanced T cell anti-tumor activity

Phase I Study Design

Analysis of tumor cellular compartments, peritoneal ascites/washes (PF), and blood; Cytokine IFN- γ , IL-12, TNF- α , VEGF in PF & blood. Results presented: CD8+/immune suppressive cells in tumor tissue and IL-12, IFN- γ , TNF- α , and VEGF in PF and plasma.

Celsion

Study Endpoints

Primary Objectives: To determine safety, feasibility, and dose in targeted patient population

Secondary Objectives: pathological CR, PFS

Translational Objectives: IFN-y, IL-12, VEGF, and tumor-specific T-cell response of CD4+ and CD8+

Study Population

Patients	Dates of C1D1	Age (yrs.)	Histology	Stage	Performance Status	Baseline CA- 125 (U/mL)
18 (ITT)	Range: 05Oct2015 – 17May2017	Median: 63 Range: 48-79	Serous: 95% Clear Cell: 5%	IIIC: 67% IV: 33%	0: 34% 1:55% 2:11%	Median: 565 Range: 78 - 2252
14 (Per Protocol)	Range: 05Oct2015 – 15Feb2017	Median: 62 Range: 48-79	Serous: 100%	IIIC: 71% IV: 29%	0: 36% 1: 64% 2: 0%	Median: 988 Range: 245-2252

Results: Safety (n=15)

Most Common AEs Attributed to GEN-1	Total (n, %)	Grade 1 & Grade 2 (n,%)	Grade 3 (n,%)	Grade 4 (n, %)	Grade 5 (n, %)
Nausea	9, 60%	9, 60%	0, 0%	0, 0%	0, 0%
Abdominal Pain/ Cramping	6, 40%	5, 33%	1, 6%	0, 0%	0, 0%
Fatigue	6, 40%	6, 40%	0, 0%	0, 0%	0, 0%
Vomiting	6, 40%	5, 33%	1, 6%	0, 0%	0, 0%
Diarrhea	5, 33%	3, 20%	2, 13%	0, 0%	0, 0%
Neutropenia	5, 33%	3, 20%	1, 6%	1, 6%	0, 0%

Four patients discontinued the study due to AEs

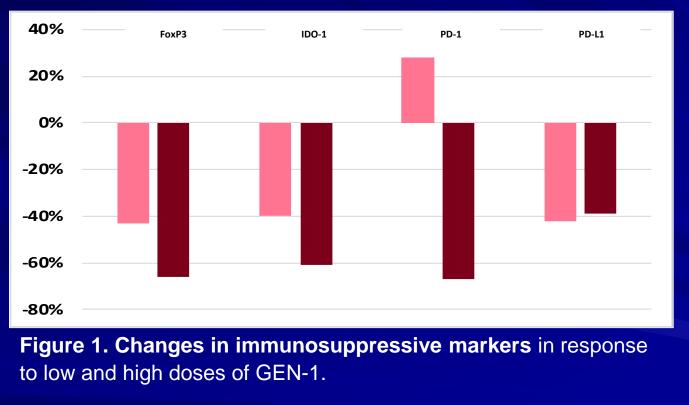
- Dosing delays > 21 days
- Declining performance status
- Sepsis & congestive heart failure
- Altered taste (GEN-1 treatment only)

Response Data

Response	Total	36 mg/m²	47 mg/m ²	61 mg/m²	79 mg/m²	
RECIST	CR	2	1	0	0	1
(Prior to IDS)	PR	10	0	3	3	4
(n=14)	SD	2	2	0	0	0
	RO	9	2	0	2	5
Debulking Status (n=14)	R1	3	1	2	0	0
	R2	2	0	1	1	0
	cPR	1	1	0	0	0
Pathologic Response (n=14)	Micro	8	1	2	1	4
	Macro	5	1	1	2	1

OVATION 1 Study: Improved Progression-Free Survival with GEN-1

Improvements vs Historic Outcomes in Comparable Patient Populations



Similar Baseline Patient Characteristics in the OVATION I Study vs Large NAC Trials

Name of Study	# of Patients 🛉	Age 🚺	Histology 🎻	Stage 🛃
OVATION 1	18	Median: 63 Range: 48-79	Serous: 95% Clear Cell: 5%	IIIC: 67% IV: 33%
Vergote	670	Median: 63 Range: 33-81	Serous: 65% Undiff: 27%	IIIC: 76% IV: 24%
Kehoe	550	Median: 65 Range: 34-88	Serous*: 83% Clear Cell: 6%	IIC, IIIA/B: 12% IIIC: 71% IV: 15%

*Includes high-grade and "not specified"

Decrease in Immunosuppressive Markers in the TME Post GEN-1/NACT

Low doses (n=4)

High doses (n=8)

* Data in Figures 1 and 2 from 12 patients treated per protocol

Increase in the Ratio of Immune Activating Cells to Immune Suppressive Cells in the TME

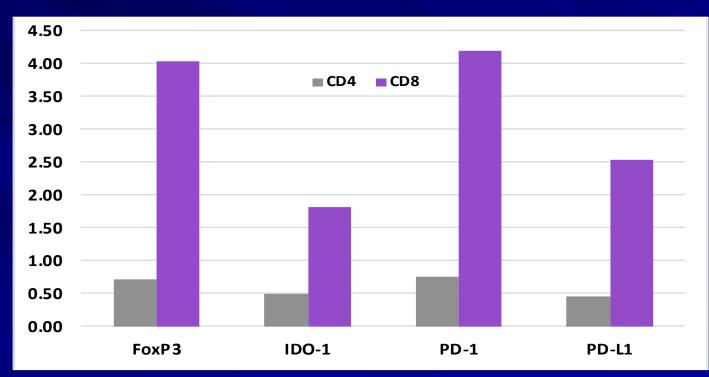
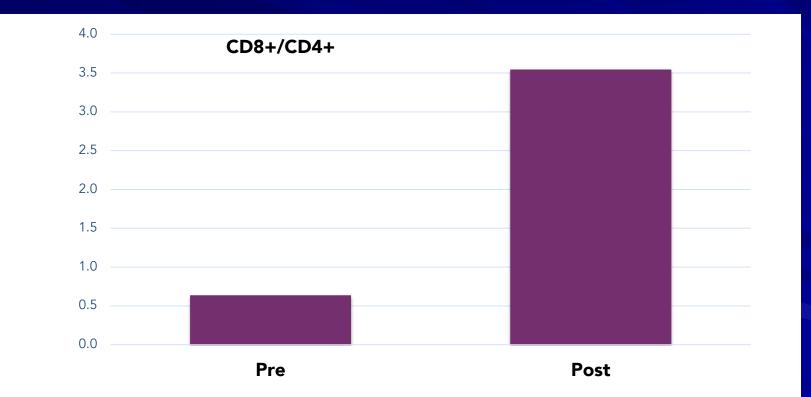
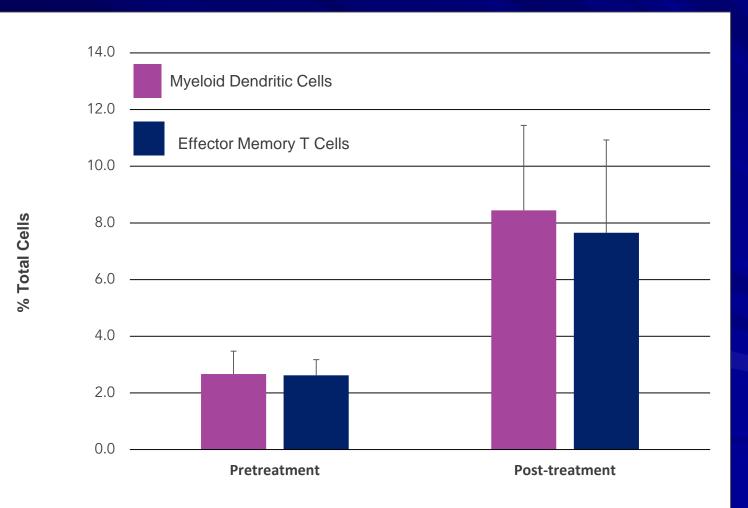



Figure 2. Changes in the ratios of CD4+ and CD8+ T cells to immunosuppressive markers presented as post-treatment ratio to pretreatment ratio (e.g., (post- CD4/PD-1)/(pre- CD4/PD-1).


Increase in CD8+/CD4+ in Tumor Post GEN-1 / NAC Treatment

Ratio of CD8+/CD4+ T cells increased nearly 500%

Increases in Dendritic and T_{EM} Cells population GEN-1 / NAC

Summary of TR Findings

GEN-1 IP + NAC treatment resulted in immunological changes that are consistent with the ability of GEN-1 to increase local (peritoneal) levels of IL-12 and its downstream anti-cancer cytokines, and reduction in VEGF levels, with little changes in systemic effect.

The increases in IL-12 and IFN-g follows a dose response.

Analysis of tumor tissue and ascites for immune cell populations shows a shift in local environment favoring immunostimulatory mechanisms over immunosuppressive mechanisms.

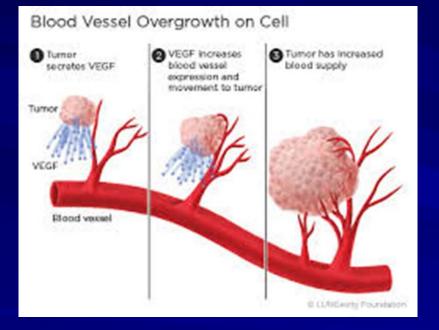
The immunological changes observed in local tumor environment following GEN-1/NACT are of high prognostic value and favorable to novel combination immune therapies.

Conclusions

Adding GEN-1 to doublet treatment is safe and appears to be active in EOC patients receiving neoadjuvant chemotherapy.

Dose limiting toxicity was not reached.

GEN-1 appears to change the tumor microenvironment.


OVATION 2 is extending the results of the phase I OVATION trial.



OVATION 2

Ov 12 patier Up	F) Ul nts in p to 1 F	FIGC p to n Pha 118 p Rand	D IIIC 130 p ise I R batier lomiz	er Pa C & IV Datien Run-in Its in F ed 1:1 GEN-1	/) ts (100 p Phase		n²);		Primary Endpoint Secondary Endpoint Progression Clinical Response, Pathological Free Survival Surgical Response, Safety, Bid				- ical Re	esponse,							
				one	Arm								Carb	oplatin) Pac	litaxel) ge	N-1	
	Treat -7	men 1	nt Day 8	s 15	1	8	15	1	8	15	Surgery	1	8	15	1	8	15	1	8	15	
				NAC	T A	rm		•				Week st Period			*			•			
	Treat	t <mark>men</mark> 1	nt Day 8	s 15	1	8	15	1	8	15	Surgery	1	8	15	1	8	15	1	8	15	
	Catheter→	*	۲	۲	●◆	۲	۲	●◆	۲	۲			۲	۲	●◆	۲	۲	<!--</td--><td>۲</td><td>۲</td><td>Celsion</td>	۲	۲	Celsion

MAINTENANCE THERAPY

FDA-Approved Options for 1L Maintenance Therapy: Bevacizumab and Olaparib

Registrational Clinical Trial(s)	Drug	Indication	Biomarker Testing Required?	Recommended Dosing
GOG-0218	Bevacizumab ¹	Bevacizumab in combination with carboplatin and paclitaxel, followed by bevacizumab as a single agent for treatment of patients with stage III or IV epithelial ovarian, fallopian tube, or primary peritoneal cancer following initial surgical resection	No	15 mg/kg IV q3w in combination with carboplatin and paclitaxel for up to 6 cycles, followed by 15 mg/kg q3w as a single agent, for a total of up to 22 cycles or until disease progression, whichever occurs earlier
SOLO-1	Olaparib ²	Olaparib maintenance treatment of adult patients with deleterious or suspected deleterious g <i>BRCA</i> ^{mut} or s <i>BRCA</i> ^{mut} advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in CR or PR to 1L platinum-based chemotherapy	Yes, FDA-approved companion diagnostic to select patients with g <i>BRCA</i> ^{mut} disease	300 mg (two 150-mg tablets) bid

bid, twice daily; BRCA, breast cancer susceptibility gene; CR, complete response; FDA, US Food and Drug Administration; IV, intravenous; g, germline; L, line; mut, mutation; PR, partial response; q3w, every 3 weeks; s, somatic.

1. Bevacizumab package insert. Genentech, Inc; June 2018. **2.** Olaparib package insert. AstraZeneca Pharmaceuticals LP; December 2018.

Select Phase 2/3 Studies on 1L Maintenance Therapy in Ovarian Cancer

Study Name	NCT Identifier	Ph	Description	Specific Biomarker Status Required?	Primary Endpoint(s)	Est. Primary Completion Date
VELIA / GOG-3005	NCT02470585	3	Carboplatin/paclitaxel + veliparib Followed by maintenance veliparib	No	PFS	Apr 2019
PRIMA	NCT02655016	3	Maintenance niraparib following response on platinum- based chemotherapy	No	PFS	Feb 2020
OVARIO	NCT03326193	2	Maintenance niraparib + bevacizumab following response to platinum-based chemotherapy with bevacizumab	No	PFS rate at 18 mo	Dec 2020
JAVELIN OVARIAN PARP 100	NCT03642132	3	Platinum-based chemotherapy + avelumab Followed by maintenance avelumab + talazoparib	No	PFS	Feb 2022
DUO-O	NCT03737643	3	Chemotherapy + durvalumab + bevacizumab Followed by maintenance durvalumab + bevacizumab + olaparib	No	PFS in non- t <i>BRCA^{mut}</i> patients	May 2022
PAOLA-1	NCT02477644	3	Platinum/taxane chemotherapy + bevacizumab Followed by maintenance bevacizumab plus olaparib	No	PFS	Jun 2022
ATHENA	NCT03522246	3	Maintenance rucaparib + nivolumab following response to platinum-based chemotherapy	No	PFS	Dec 2024
ENGOT-ov43 / KEYLYNK-001	NCT03740165	3	Chemotherapy + pembrolizumab Followed by maintenance olaparib ^a	Yes: non-BRCA ^{mut}	PFS, OS	Aug 2025

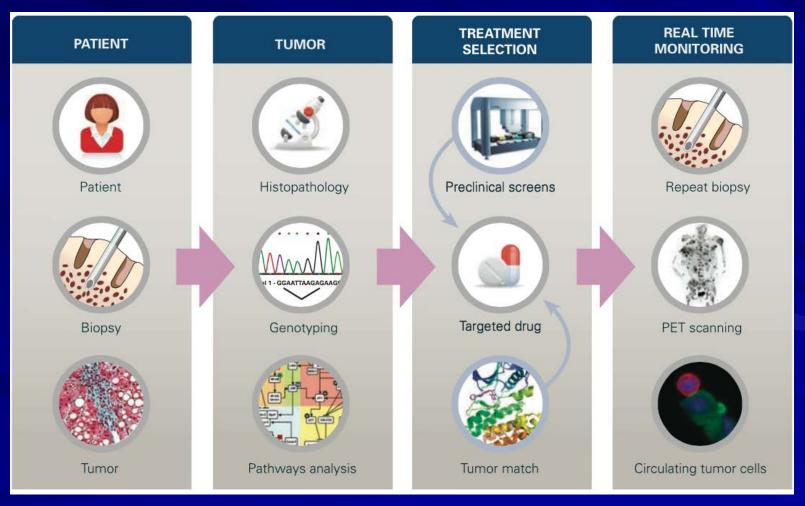
^a Carboplatin/paclitaxel for 5 cycles, plus pembrolizumab for up to 35 cycles, plus olaparib starting cycle 7.

BRCA, breast cancer susceptibility gene; est., estimated; L, line; mut, mutation; OS, overall survival; PFS, progression-free survival; Ph, phase; t, tumor. ClinicalTrials.gov: NCT02470585, NCT02655016, NCT03326193, NCT03642132, NCT03737643, NCT02477644, NCT03522246, NCT03740165. Accessed January 17, 2019.

Study Designs of Key PARPi Maintenance Therapy Trials in Recurrent Ovarian Cancer

	NOVA ^{1,2} (NCT01847274)	Study 19 ^{3,4} (NCT00753545)	SOLO-2 ^{5,6} (NCT01874353)	ARIEL3^{7,8} (NCT01968213)				
N	553	265	295	564				
Phase	3	2	3	3				
Design	Randomized, placebo-controlled, and with patients who have received ≥2 previous courses of platinum-containing therapy							
Patient population	Platinum-sensitive recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer; both g <i>BRCA</i> ^{mut} and non-g <i>BRCA</i> ^{mut} cohorts	Platinum-sensitive recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer	Platinum-sensitive relapsed high-grade serous ovarian, fallopian tube, or primary peritoneal cancer, or high-grade endometrioid cancer, with <i>BRCA1</i> ^{mut} or <i>BRCA2</i> ^{mut}	Platinum-sensitive relapsed high-grade serous or endometrioid epithelial ovarian, primary peritoneal, or fallopian tube cancers				
Dosage	Niraparib oral 300 mg daily until disease progression	Olaparib oral 400 mg bid until disease progression	Olaparib oral 300 mg (tablets) bid until disease progression	Rucaparib oral 600 mg bid until disease progression				
1° Endpoint	PFS by RECIST							
Assessor of PFS	BICR or central clinical assessment	Investigator radiography assessment						
2° Endpoint	PRO, PFS2, time to subsequent therapy, OS, safety	OS, ORR, DCR, DOR, % change tumor size wk 24, best % change CA-125 levels, response, TTP, QoL	OS, TTP, PFS2, QoL, TFST, TSST, TDT, PFS patients with deleterious <i>BRCA</i> variant, PK	PFS by RECIST (BICR), QoL, OS, safety, PK				
Stratification factors	TTP after completion of penultimate platinum regimen, prior treatment with BEV, best response during last platinum regimen	TTP on penultimate platinum therapy, objective response to last platinum regimen, ethnic descent	Response to previous platinum therapy, PFI	Response to previous platinum therapy, PFI, HR repair gene mutation status				

BEV, bevacizumab; BICR, blinded independent central review; bid, twice daily; DCR, disease control rate; DOR, duration of response; g, germline; HR, homologous recombination; mut, mutation; ORR, objective response rate; OS, overall survival; PARPi, poly ADP ribose polymerase inhibitor; PFI, platinum-free interval; PFS, progression-free survival; PFS2, time from randomization to second progression; PK, pharmacokinetics; PRO, patient-reported outcomes; QoL, quality of life; RECIST, Response Evaluation Criteria In Solid Tumors; TDT, time from randomization to treatment discontinuation or death; TFST, time to first subsequent therapy or death; TSST, time to second subsequent therapy or death; TTP, time to progression.


1. ClinicalTrials.gov. NCT01847274. Accessed January 18, 2019. 2. Mirza MR, et al. N Engl J Med. 2016;375(22):2154-64. 3. ClinicalTrials.gov. NCT00753545. Accessed January 18, 2019. 4. Ledermann J, et al. N Engl J Med. 2012;366(15):1382-92.

ClinicalTrials.gov. NCT01874353. Accessed January 18, 2019.
 Pujade-Lauraine E, et al. Lancet Oncol. 2017;18(9):1274-84.
 ClinicalTrials.gov. NCT01968213. Accessed January 18, 2019.
 Coleman RJ, et al. Lancet. 2017;390(10106):1949-61.

43

Conclusion

Molecular and immunotherapeutic targeted therapies in combination with chemotherapy for upfront treatment

