Phase III Studies in Intermediate Stage HCC: What we have learned from recent failures

Richard S. Finn, MD

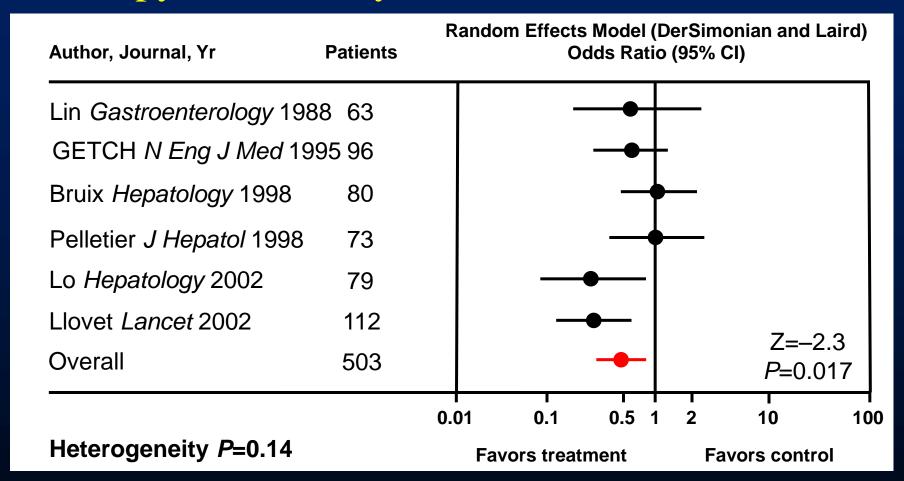
Associate Professor of Medicine

Division of Hematology/ Oncology

Geffen School of Medicine at UCLA

BCLC Staging System

Chemoembolization: Randomized Trials (Nearly Identical Techniques)


Lo et al^[1]: N = 80 with newly diagnosed unresectable HCC, 80% HBV positive, 7-cm tumors (60% multifocal)

Toobnique	Survival, %			
Technique	Year 1	Year 2	Year 3	
TACE	57	31	26	
Supportive care	32	11	3	

Llovet et al^[2]: N = 112 with unresectable HCC, 80% to 90% HCV positive, 5-cm tumors (~ 70% multifocal)

Technique	Survival, %		
	Year 1	Year 2	
TACE	82	63	
Supportive care	63	27	

TAE/TACE vs Best Supportive Care/Suboptimal Therapy: Meta-analysis of RCTs (2-Yr Survival)

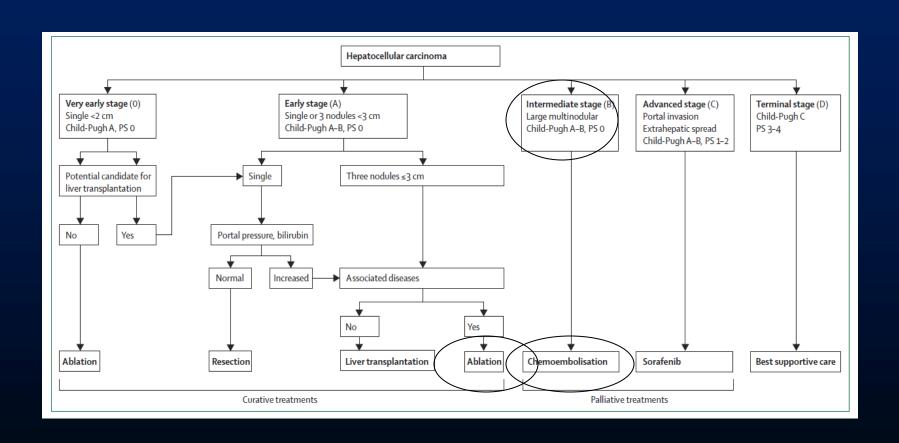
CI=confidence interval; TAE=transarterial embolization.

Early HCC Treated with RFA

- Lencioni et al, 2005:
 - 206 patients with early stage unresectable HCC treated with RFA
 - Favorable 5 year survival

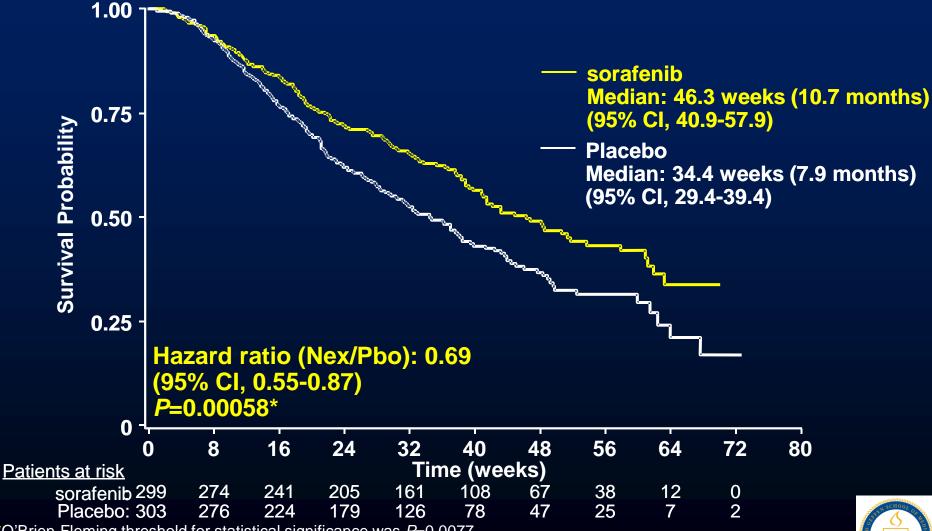
	3yr Survival	5yr Survival
Child A with single lesion	89%	61%
Child A	76%	51%
Child B	46%	31%

o Tateishi et al, 2005:

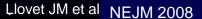

-1000 RFA procedures in >700 patients:

-Survival: 94, 77, and 54% (1-, 3-, and 5-year)

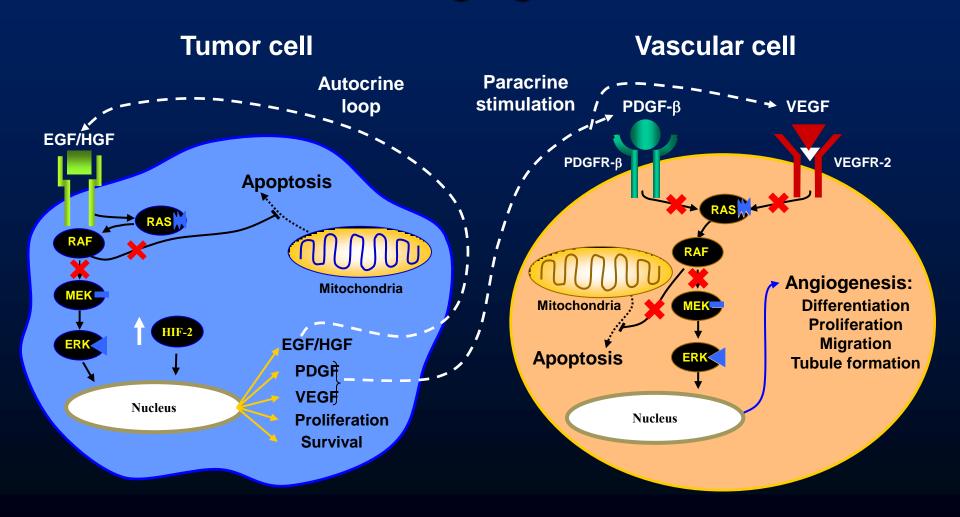
BCLC Staging System


BCLC Staging System

Opportunities for Improvement for BCLC B HCC


- Improved technologies for local treatment
 - DEB-TACE
 - Yttrium-90
 - Microwave ablation
- Integration of new therapeutics into combination studies with local treatment
 - sorafenib
 - Brivanib
 - Lyso-Thermosensitive Liposomal doxorubicin (LTLD, Thermodox®)

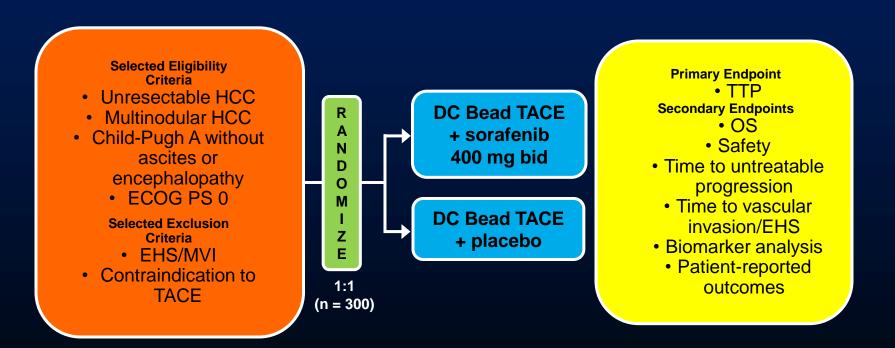
Phase III SHARP Trial: Overall Survival (Intent-to-Treat Population)



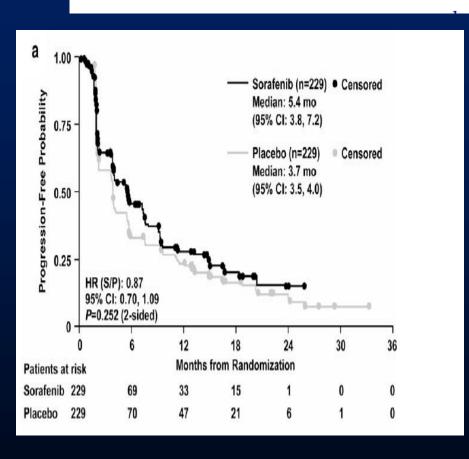
^{*}O'Brien-Fleming threshold for statistical significance was *P*=0.0077.

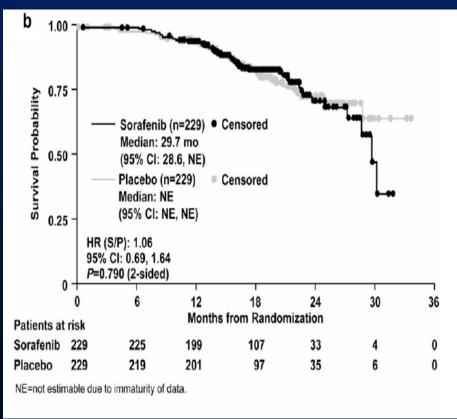
CI=confidence interval; Nex/Pbo=sorafenil/placebo.

Sorafenib Targets Both Tumor Cell Proliferation and Angiogenesis

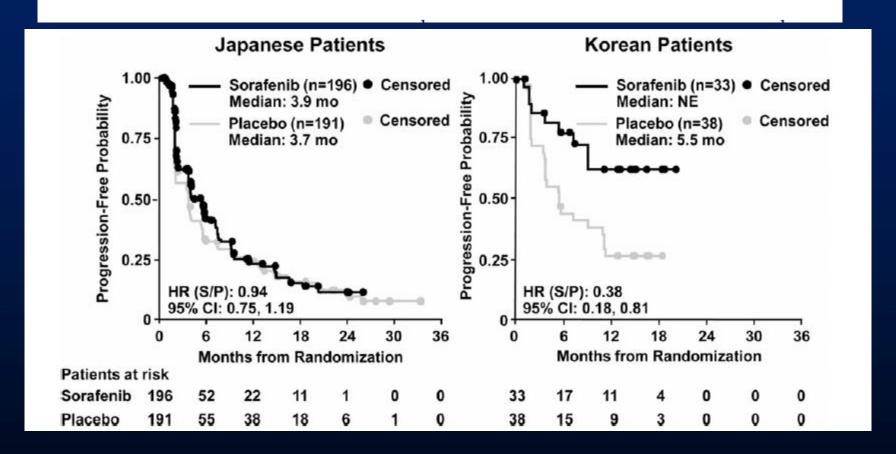


Rationale for Combining Anti-angiogenics as Adjuvant to TACE in HCC Patients

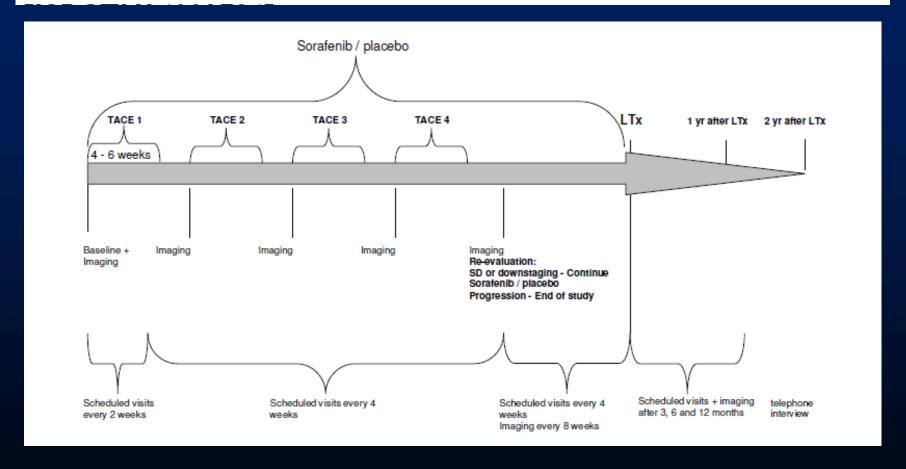

- Trans-arterial chemo-embolization (TACE) has been shown to prolong survival in intermediate-stage HCC patients¹
 - Post-TACE recurrence is high²
- TACE-induced hypoxia increases VEGF, FGF, and other proangiogenic factors that can favor increased tumor growth and recurrence³⁻⁶
- Adding antiangiogenic therapy to TACE has the potential to:
 - Reduce the frequency of TACE session
 - Delay post-TACE recurrence
 - Improve survival⁷


SPACE: Sorafenib or Placebo in Combination With TACE for Intermediate-Stage HCC

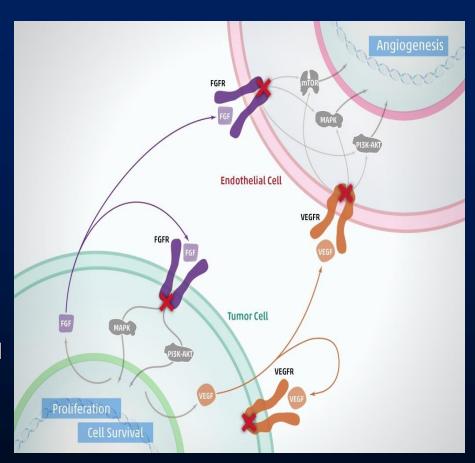
• Phase 2, randomized, double-blind, placebo-controlled study of sorafenib or placebo in combination with DC Bead TACE and doxorubicin for intermediate-stage HCC



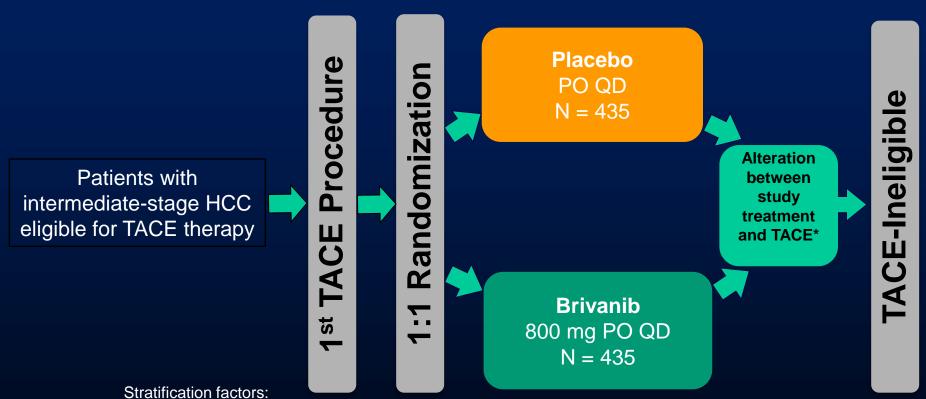
Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma *



Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma **


- High rate of study drug discontinuation
- Longer time on drug between Korean and Japanese patients (31 weeks vs 16 weeks)
- Some baseline imbalances between the two groups as well

Prospective, randomized, double-blind, multi-center, Phase III clinical study on transarterial chemoembolization (TACE) combined with Sorafenib® versus TACE plus placebo in patients with hepatocellular cancer before liver transplantation – HeiLivCa


Brivanib: A VEGFR and FGFR Inhibitor

- Vascular Endothelial Growth Factor (VEGF) and Fibroblast Growth Factor (FGF) are implicated in HCC^{1,2}
- Brivanib is an oral, selective dual inhibitor of VEGF and FGF receptors,³ and may affect tumors directly and indirectly⁴⁻⁶
- In preclinical studies, brivanib has shown activity in multiple tumors, including HCC^{3,7,8}
- Phase 3 trials of brivanib as first- and second-line treatment in advanced HCC patients did not meet OS objectives, but showed biologic activity of brivanib (TTP, DCR)^{9,10}

BRISK-TA Trial Design

Randomized, double-blind, placebo-controlled, multi-national phase 3 study

- ECOG-PS (0 vs 1)
- Child-Pugh status (A vs B)
 - Investigator site
- Maximum tumor size (<10 vs ≥10 cm)

*TACE repeated if incomplete necrosis, lesion re-growth, or appearance of new lesions

*Study treatments withheld for 2 days before, and 2 to 21 days after each TACE procedure

Endpoints

Primary

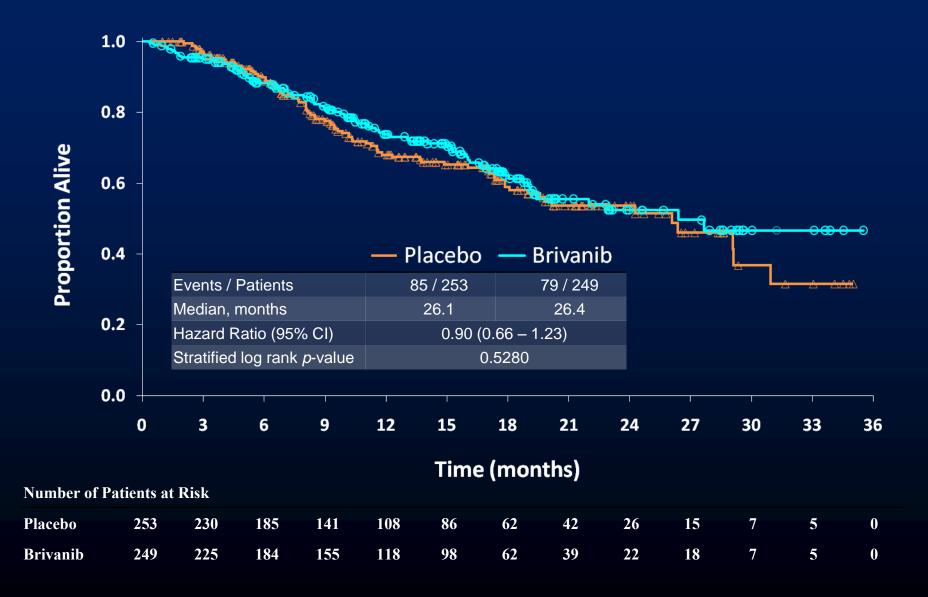
- Overall survival (OS)
 - Log-rank test at 2-sided $\alpha = 0.05$ stratified by ECOG-PS, maximum tumor size, and Child-Pugh class
 - \geq 90% power for OS improvement; HR = 0.75

Secondary

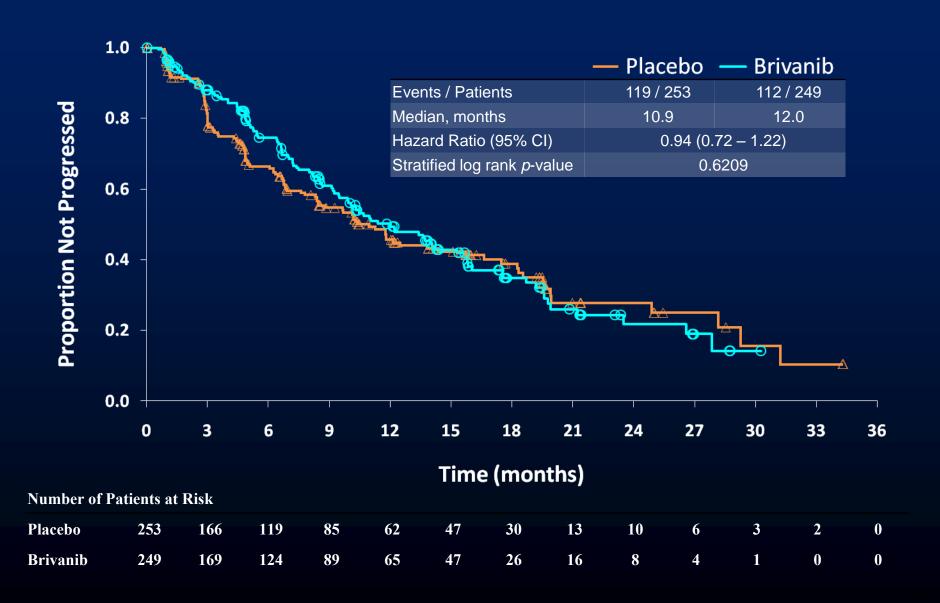
- Time to disease progression (TTDP) after first TACE
 - Disease progression defined as development of extrahepatic spread or of vascular invasion, deterioration of liver function or of ECOG-PS, or death
- Time to extrahepatic spread or vascular invasion (TTES/VI)
- Number of TACE session between randomization and disease progression/censoring
- Safety
- Exploratory
 - Objective response rate (ORR)[†]
 - Time to radiographic progression (TTP)[†] after first TACE

Study Overview

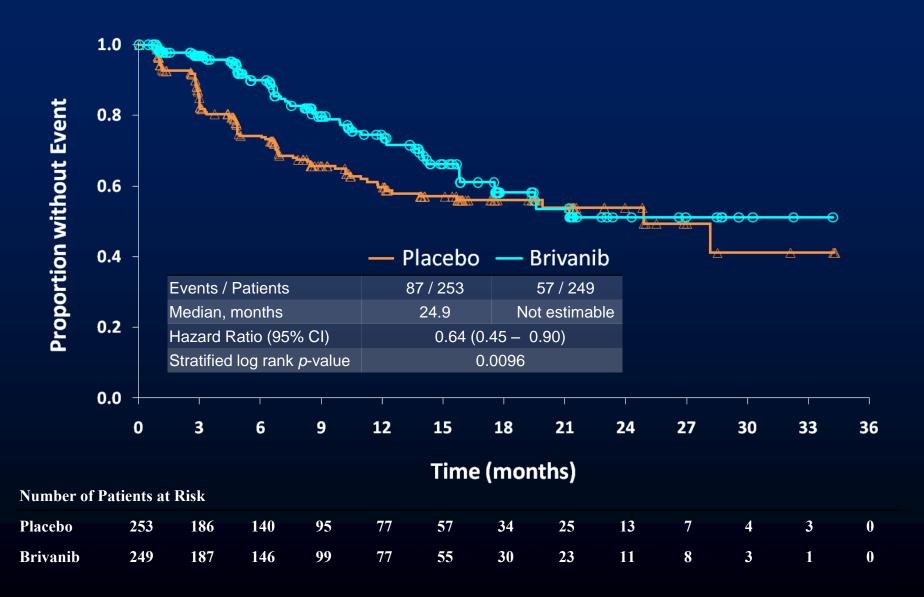
• The study was terminated 2 years early when phase 3 studies of brivanib as first- and second-line treatment in advanced HCC patients failed to meet OS objectives

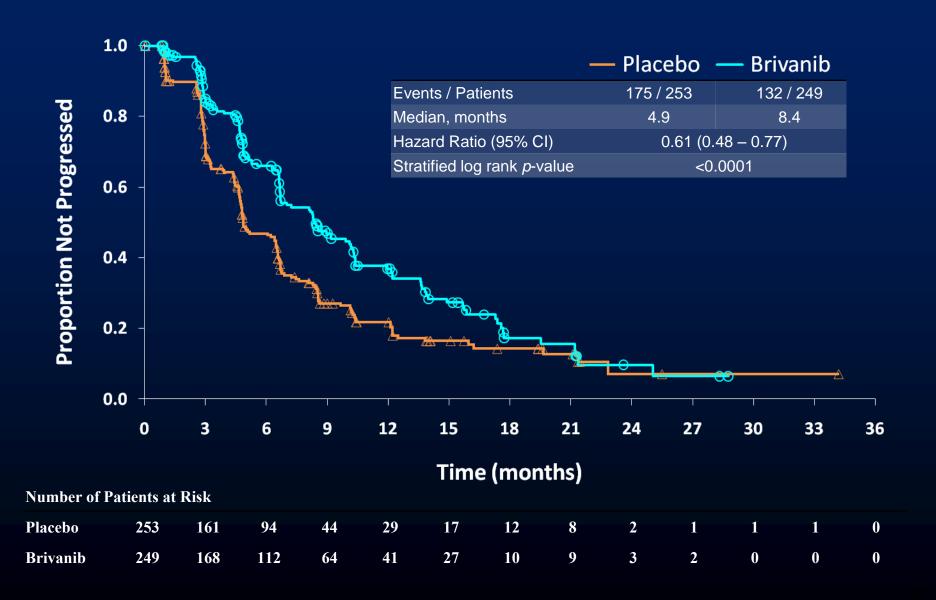

Milestone	Planned	Actual
Trial end date	December 2014	August 2012
Total number of randomized patients	870	502 (58%)
Total number of mortality events	502	164 (33%)

Characteristics of Study Patients


% of patients

Characteristics	Placebo (n = 253)	Brivanib (n = 249)
Median age, years	59	57
Male	85	83
ECOG-PS 0/1	80/20	81/19
Asian/non-Asian	88/12	88/12
Child-Pugh A/B	91/8	96/4
BCLC stage A/B	23/59	26/52
Hepatitis B/C	66/17	64/20
Alcoholic liver disease	15	16
Size of largest tumor nodule, >10/≤ 10 cm	23/77	24/76
AFP <100 ng/mL in assessable patients	47	52
Any prior non-systemic therapy	10	8


Overall Survival


Time to Disease Progression

Time to Extrahepatic Spread or Vascular Invasion

Time to Radiographic Progression

Overall Safety Summary

% of patients

Events	Placebo (n = 243)		Brivanib (n = 246)	
Events	All grades	Grade 3-5	All grades	Grade 3-5
Death within 30 days of last dose	4.7		7.3	
Death attributed to study drug toxicity	0.4		1.6	
All SAEs	37	23	48	34
All AEs	95	51	99	76
AEs leading to treatment discontinuation	18	10	40	30

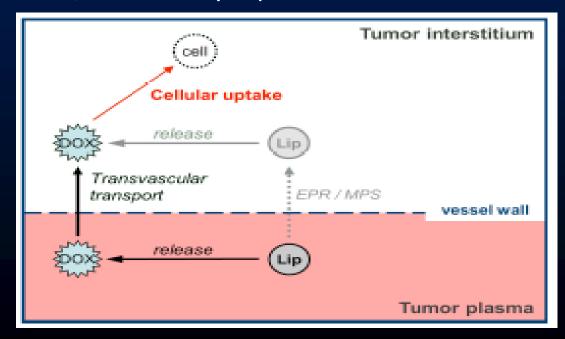
AEs of \geq grade 3 more frequent with brivanib were hyponatremia, hypertension, and fatigue

Post-hoc Analysis of Treatment Duration and Overall Survival by Country

Country	Treatment Duration		Overall Survival		
	Median in	n months*	Median ir	n months*	HR (95% CI) [†]
	Placebo	Brivanib	Placebo	Brivanib	Brivanib vs Placebo
China (n = 244)	5.0	8.3	17.1	NR	0.80 (0.50-1.28)
Japan (n = 78)	7.2	2.1	NR	NR	0.86 (0.35-2.16)
Korea (n = 68)	10.6	10.1	26.4	NR	0.55 (0.23-1.34)

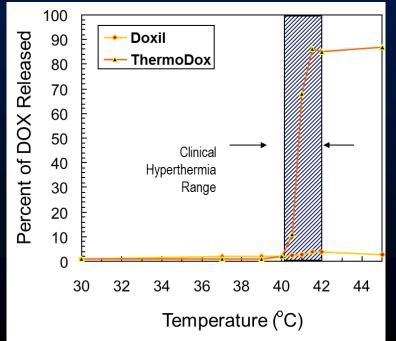
^{*}Based on Kaplan-Meier analysis

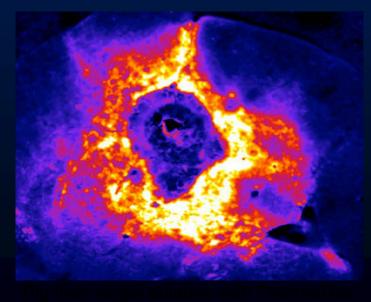
HR for OS in non-Asian patients (n = 65) was 1.41 (95% CI 0.64-3.12); treatment duration in non-Asian patients was not analyzed. NR, not reached


[†] Based on Cox proportional hazards model

Intermediate Hepatocellular Carcinoma

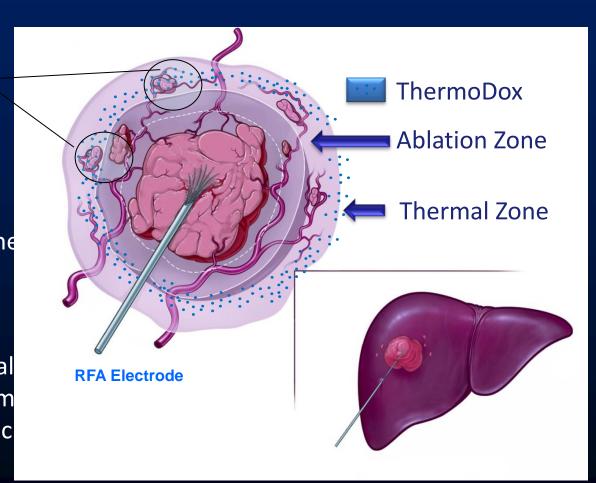
- HCC tumors > 3 cm are incurable
 - Difficult to obtain adequate margin around tumor
- Post-RFA local recurrence rate ≥ 40%
 - Efficacy of RFA influenced by tumor size
 - Large lesions cannot be treated within a single ablation zone
 - Viable tumor cells may be left in margins or clefts of overlapping ablation zones
- Multi-modality approach may be beneficial


Lyso-Thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox®)


- LTLD is a 100 nm nanoparticle which rapidly concentrates in the liver (MPS; Mononuclear Phagocytic System)
- Enhanced uptake by tumor due to EPR
 (Enhanced Permeability & Retention property of tumors)
- Primary delivery mechanism is attributed to heating > 39.5°C, driving rapid release of high concentrations of cytotoxic doxorubicin, followed by rapid diffusion into local tissue

ThermoDox® Design Principles

- Near complete encapsulation of Doxorubicin HCI
- Release of the encapsulated Doxorubicin with mild thermal warming (> 39.5°C)
- Optimized serum PK to allow the use of heat inducing medical devices to warm the target tumor - initiating a rapid drug release in the targeted tumor vasculature



RF Liver Ablation + ThermoDox

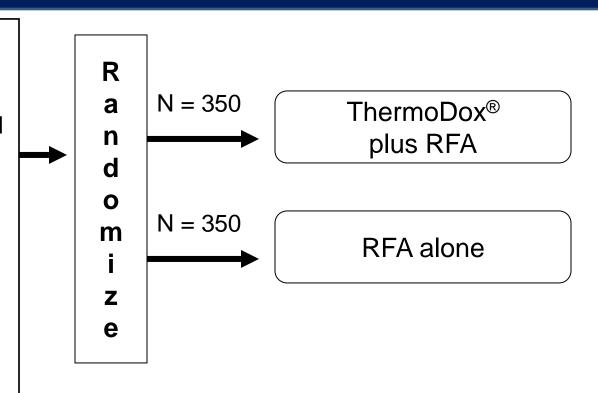
Expanding the Treatment Zone Addresses RFA Limitations

- RFA misses micrometastases outside ablation zone
- RFA+Thermodox:Infuse Thermodox~15 min. prior to RFA
- Drug concentrates in the "Thermal Zone"
- Ablation releases
 doxorubicin in "Thermal
 Zone" expanding treatm
 area and destroying mic
 metastases

Phase 3, Randomized, Double-Blind, Dummy-Controlled, Trial Of Radiofrequency Ablation (RFA) + Lyso-Thermosensitive Liposomal Doxorubicin (LTLD, Thermodox®) For **Hepatocellular Carcinoma (HCC) in Lesions 3-7 cm.**

Won Young Tak¹, Shi-Ming Lin², Yijun Wang³, Jiasheng Zheng⁴, Francesco Izzo⁵, Soo Young Park¹, Min Hua Chen⁶, Stephen N. Wong⁷, Ruocai Xu⁸, Cheng-Yuan Peng⁹, Yi-You Chiou¹⁰, Guan-Tarn Huang ¹¹, Jae Young Lee¹², Morris Sherman¹³, Basri J. J. Abdullah¹⁴, June Sung Lee¹⁵, Jing-Houng Wang¹⁶, Jong-Young Choi¹⁷, Zhao Shen Li¹⁸, Julieta Gopez-Cervantes¹⁹, Hengjun Zhao²⁰, Yan Shen²¹, Hyunchul Rhim²², Jeong Heo²³, Sang Hoon Ahn²⁴, Teerha Piratvisuth²⁵ Richard Finn²⁶, Umberto Cillo²⁷, Charles Scudamore²⁸, Kuan Sheng Ma²⁹, Hideyuki Tamai³⁰, Taweesak Tanwandee³¹, Ratha-Korn Vilaichone³², Nicholas Borys³³, *Ronnie T. P. Poon³⁴, Riccardo Lencioni³⁵

¹Kyungpook National University, ²Chang Gung Memorial Hospital Linkaou, ³The 3rd Hospital of Tianjin, ⁴Beijing Youan Hospital, Capital Medical University, ⁵Istituto nazionale Per Lo Studio E La Cura Dhl Tumorj, ⁶Peking University Cancer Hospital, ⁷Chinese General Hospital, ⁸Hunan Cancer Hospital, ⁹China Medical University Hospital, ¹⁰Taipei Veterans General Hospital, ¹¹National Taiwan University, ¹²Seoul National University Hospital, ¹³Toronto General Hospital, ¹⁴University of Malaysia Medical Center, ¹⁵Inje University Ilsan Park Hospital, ¹⁶Chang Gung Memorial Hospital, ¹⁷Catholic University of Korea, ¹⁸Changhai Hospital, ¹⁹St. Lukes Medical Center, ²⁰First Hospital of Jilin University, ²¹First Hospital of Zhejiang, ²²Samsung Medical Center, ²³Pusan National University Hospital, ²⁴Yonsei Univiersity College of Medicine, ²⁵Songklanagarind Hospital, ²⁶Ronald Reagan UCLA Medical Center, ²⁷Azienda Ospedaliera di Padova, ²⁸Vancouver General Hospital, ²⁹Southwest Hospital First Affiliated Hospital, ³⁰Wakayama Medical University, ³¹Siriraj Hospital, ³²Thammasat University Hospital, ³³Celsion Corporation, ³⁴The University of Hong Kong Queen Mary Hospital, ³⁵Pisa University


HEAT Study Design

General Eligibility:

- Non-resectable HCC
- No more than 4 lesions
- At least 1 lesion > 3cm and none > 7cm
- No previous treatment
- Child-Pugh A or B

Stratification:

- Lesion size: 3-5 vs >5-7
- RFA technique:
 - open surgical
 - laparoscopic or
 - percutaneous

Endpoints

Primary: PFS (Progression Free Survival) Secondary: OS (Overall Survival), TTLR (Time to Local Recurrence), Safety, PRO (Time to Definite Worsening)

HEAT Study Methods

- 30-minute IV infusion of 50 mg/m² LTLD or dummy infusion of D5W
- RFA began 15 min. after starting the infusion and was completed within 3 hours
- A single retreatment was allowed for an incomplete initial ablation
- RFA was US FDA approved device and investigator must be experienced and follow general accepted practices of RFA operation
- No minimum ablation times or number of ablation spheres were prescribed in protocol

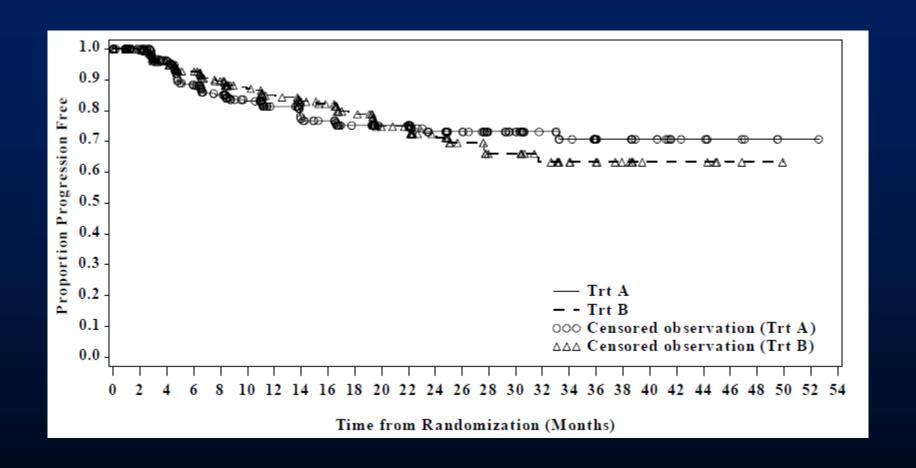
HEAT Study Endpoints

- Progression-free survival (PFS) was the primary endpoint
- Secondary
 - Time to local recurrence (TTLR)
 - Overall survival (OS) is ongoing
 - Time to definite worsening (PRO)
- Patients Analyzed

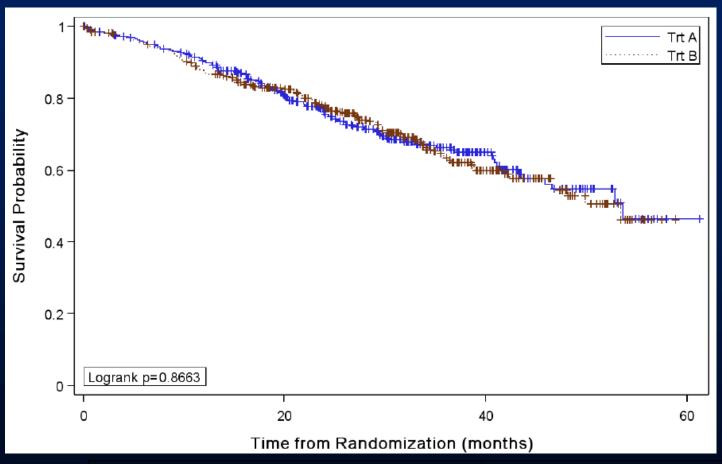
Subjects	RFA	RFA + LTLD	Total
Randomized (ITT)	347	354	701
As-Treated	334	343	677

Demographics

Parameter	RFA + LTLD	RFA	Total	p-value
Male	267 (75.4%)	263 (75.8%)	530 (75.6%)	0.9095
Female	87 (24.6%)	84 (24.2%)	171 (24.4%)	
Frequent Age: 60-65	65 (18.4%)	64 (18.4%)	129 (18.4%)	0.9293
Caucasian	42 (11.9%)	26 (7.5%)	68 (9.7%)	0.0505
Black	0	0	0	
Asian	312 (88.1%)	321 (92.5%)	633 (90.3%)	
Japanese	8 (2.3%)	11 (3.2%)	19 (2.7%)	
Korean	83 (23.4%)	91 (26.2%)	174 (24.8%)	
Taiwanese	66 (18.6%)	62 (17.9%)	128 (18.3%)	
Chinese	115 (32.5%)	125 (36.0%)	240 (34.2%)	
Other	40 (11.3%)	32 (9.2%)	72 (10.3%)	


Lesion Characteristics

Parameter	RFA + LTLD	RFA	Total	P-value
Largest Lesion St				
3.0 - 5.0 cm	109 (85.2%)	111 (88.8%)	220 (87.0%)	0.3896
>5.0 - 7.0 cm	19 (14.8%)	14 (11.2%)	33 (13.0%)	
Number of Targe				
1	83 (64.8%)	79 (63.2%)	162 (64.0%)	0.4927
2	29 (22.7%)	28 (22.4%)	57 (22.5%)	
3	8 (6.3%)	14 (11.2%)	22 (8.7%)	
4	2 (1.6%)	4 (3.2%)	6 (2.4%)	
5	1 (0.8%)	0	1 (0.4%)	
Missing	5 (3.9%)	0	5 (2.0%)	


Source of Progression Free Survival

Type of Progression (Events)	RFA + TDox (n=185)	RFA (n=186)	Total (n=371)
Local Recurrence	41 (22.2%)	37 (19.9%)	78 (21%)
Distal Intrahepatic	78 (42.2%)	95 (51.1%)	173 (46.6%)
Extrahepatic	13 (7.0%)	10 (5.4%)	23 (6.2%)
Combination	7 (3.8%)	8 (4.3%)	15 (4.0%)
Death	17 (9.2%)	17 (9.1%)	34 (9.2%)
Treatment Failure	29 (15.7%)	19 (10.2%)	48 (12.9%)

Time to Local Recurrence

Overall Survival

Median Time to OS event RFA + TDox:	53.66 mos.
RFA Alone:	53.40 mos.
Hazard Ratio (Trt A/Trt B):	1.011 (CI 0.761, 1.286)

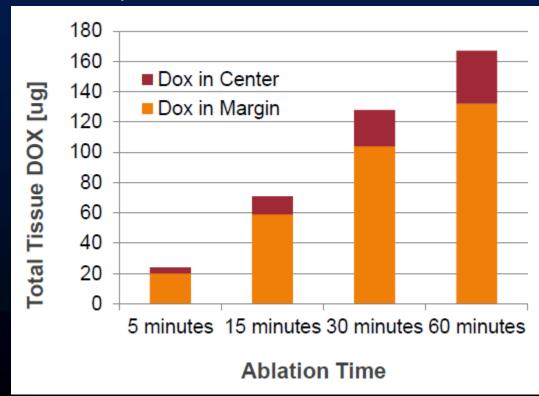
Patient Disposition & Treatment

Reason For Discontinuation	RFA + TDox (n=354)	RFA (n=347)	Total (n=701)
Disease Progression	167 (47%)	192 (55%)	359 (51%)
Death prior to progression	15 (4.2%)	13 (3.7%)	28 (4.0%)
Withdrawn Consent	21 (5.9%)	8 (2.3%)	29 (4.1%)
AE or Medical Condition	12 (3.4%)	10 (2.9%)	22 (3.1%)
Prohibited Medications	11 (3.1%)	3 (0.9%)	14 (2.0%)
Liver Transplant or Resection	1 (0.3%)	2 (0.6%)	3 (0.4%)
Failure to Comply with Protocol	11 (3.1%)	11 (3.2%)	22 (3.1%)
Treatment Failure	6 (1.7%)	6 (1.7%)	12 (1.7%)

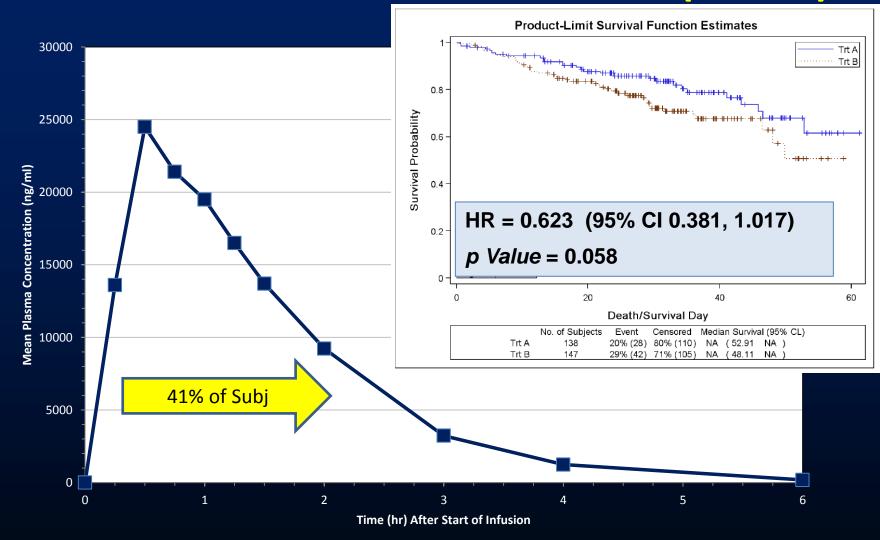
Subsequent Non-Study Treatment

		RFA + TDox (n=354)	RFA (n=347)	Total (n=701)	
TACE		51 (14.4%)	76 (21.9%)	127 (18.1%)	
RFA		83 (23.4%)	82 (23.6%)	165 (23.5%)	
Surgery		5 (1.4%)	6 (1.7%)	11 (1.6%)	
Liver Transplant		1 (0.3%)	4 (1.2%)	5 (0.7%)	
Other Procedure		17 (4.8%)	8 (2.3%)	25 (3.6%)	
Systemic Therapies		7 (2.0%)	11 (3.2%)	18 (2.6%)	
TO	OTAL:	152 (42.9%)	173 (49.9%)	325 (46.4%)	

Adverse Event Summary


	RFA/TDox (n=343)			RFA (n=334)		
	All Grades	Grade 3	Grade 4	All Grades	Grade 3	Grade 4
All AE's	327	87	129	301	85	10
GI	164	10	2	170	11	3
- abd pain	97	1	0	108	3	0
- nausea	54	0	0	43	0	0
- vomiting	35	0	0	28	0	0
General	106	4	0	133	4	1
- pyrexia	57	1	0	100	2	0
Blood	191	42	111	27	6	3
- neutropen	143	34	95	6	2	1
- leukopenia	92	38	24	5	1	0
- thrombocy	18	8	1	2	0	0

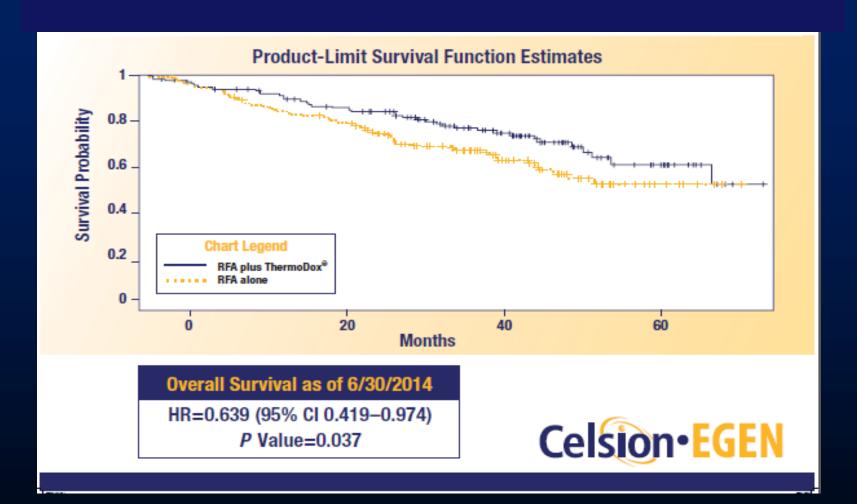
Adverse Event Summary (cont)


	RFA/Tdox (n=343)			RFA (n=334)		
	All Grades	Grade 3	Grade 4	All Grades	Grade 3	Grade 4
All AE's	327	87	129	301	85	10
Procedural	80	5	2	88	4	0
- pain	29	2	0	40	1	0
- wound cm	34	2	0	34	1	0
Skin	183	13	0	18	0	0
- alopecia	173	13	0	2	0	0

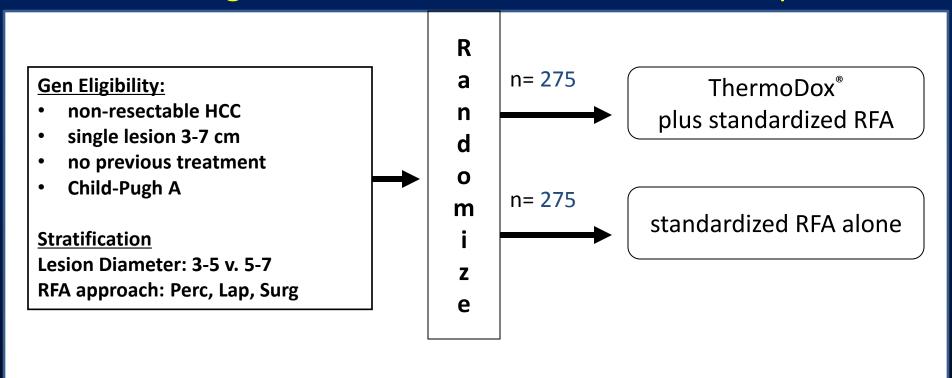
Post Hoc Analysis

- Ablation time or strategy was not mandated in HEAT Study
 - High degree of variability exists with ablation cycles (burns) and treatment time by lesion size
- Recent simulation studies show that prolonged heating is required in order to achieve optimal tissue concentrations of doxorubicin

OS of Patients with RFA ≥ 45 mins (n=285)



Duration of RFA May Have Marked Effect on Clinical Outcome with ThermoDox


		# of Pts	Deaths		HR	
< 45 mins	RFA + TDox	96	29	30%		
	RFA Only	71	27	38%		
	- -	167	56		1.139	
> 45 mins						
< 90 mins	RFA + TDox	76	14	18%		
	RFA Only	105	27	26%		
	-	181	41		0.585	
> 90 mins	RFA + TDox	62	14	23%		
	RFA Only	42	15	36%		
	_	104	29		0.584	
> 45 mins	RFA + TDox	138	28	20%		
	RFA Only	147	42	29%		
	-	285	70		0.623	p = 0.058

Sub-Group Analysis of HEAT Study Data:

285 Patients with Optimized RFA (>45 mins)

OPTIMA Phase 3 Design Currently Being Initiated at 100 sites Throughout Asia, North America, and Europe

Primary: Overall Survival Secondary: PFS, Safety

End Points

The Study Design Difference-Optimizing both RFA & Chemo

The new OPTIMA protocol

104-13-302

differs substantially

from the earlier 700 patient

Phase III trial

- Optimized thermal ablation

 (by requiring multiple overlapping
 RFA ablation cycles)
- Optimized doxorubicin tumor tissue concentration

(by heating the target area for at least 45 minutes to concentrate a therapeutic amount of doxorubicin in tumor tissue)

- Eligibility limited to patients with a single HCC lesion
- Overall Survival is the primary endpoint

Conclusions

- Intermediate stage/ BCLC B is a well defined entitiy
- **TACE** has been shown to improve survival in selected patients
- Efforts to improve on TACE alone have not been successful to date
 - Heterogeneity of technique
 - Tolerability of novel agents with TACE
 - Optimal endpoints and assessments
- RFA with ThermoDox is safe, with reversible myelotoxicity
 - Safety profile similar to doxorubicin
- The HEAT Study did not show a benefit in the primary endpoint of PFS
 - OS data, a secondary endpoint is still maturing
- Post hoc analysis suggests patients showed improvement when RFA treatment time ≥ 45 mins
- The Optima study will evaluate this hypothesis