

Cantor Fitzgerald Annual Healthcare Conference

July 13, 2016

Safe Harbor Statement

Except for historical information, the statements made in this presentation are forward-looking statements involving significant risks and uncertainties.

These risks and uncertainties, including those related to the future financial position and business strategy of the Company, are detailed in the Company's filings with the Securities and Exchange Commission.

Oncology Company

Capital Efficient Drug Development

Three Nano-Particle Based Technology Platforms to Drive Growth

Targeted Chemotherapy

Phase III Study in Primary Liver Cancer, The OPTIMA Study
Phase II Study in RCW Breast Cancer, The Euro-DIGNITY Study

Gene mediated Immuno-Oncology

Phase I Neoadjuvant Therapy in 1st Line Ovarian Cancer

Phase I/II Combination Therapy with Avastin 2nd line Ovarian Cancer

Lung Directed RNA Therapy

Preclinical NHP mRNA

Preclinical murine miRNA

Pipeline of Clinical and Preclinical Studies

Phase III, Phase II, and Phase I

INDICATION	CANDIDATE /Study	PRE-CLINICAL	PHASE 1-2	PHASE 3
Primary Liver	ThermoDox/OPTIMA Study		ı	Phase III enrolling
RCW Breast	ThermoDox /Euro-DIGNITY		Phase II i	nitiate Q4, 2016
Ovarian 1 st Line	GEN-1/OVATION Study		Phase I enrollin	ig 3 rd cohort
Ovarian 2 nd Line	GEN-1 + Avastin + Doxil	Pho	use I/II initiate Q1, 2	2017
Glioblastoma	GEN-1 preclinical	Efficacy/Saf	ety/Tox	
Lung Cancer	miRNA preclinical	Efficacy/Safety/Tox		

Focus on Our Two Clinical Stage Platforms

Lysolipid Thermally
Sensitive Liposomes
Known Chemotherapeutics

ThermoDox

Targeted Doxorubicin Delivery

- Phase III Study Enrolling in HCC
- Phase II Study in RCW Breast Cancer

Synthetic Non-viral Vector
DNA-based Plasmids
Therapeutic Proteins

GEN-1

Localized IL-12 Immunotherapy

- Neoadjuvant Study in 1st Line Ovarian
- Combination Study with Avastin and Doxil in 2nd Line Ovarian Cancer

Chemotherapy

ThermoDox

Celsion

Hepatocellular Carcinoma

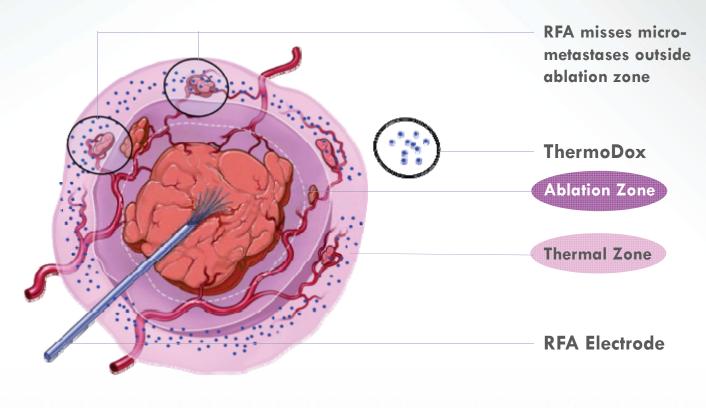
Large and Deadly Global Cancer

- 5th most prevalent
 - 800,000 global incidence growing 5% annually
 - By 2020, expected to be the #1 cancer
 - China has 50% of new cases; 75% in Asia

- 4th highest mortality
 - 5-year survival rate less than 10%
 - Median survival from time of diagnosis is less than 3 years
 - Curative surgery is possible in less than 20% of patients

Market Opportunity > 200K Patients

Multi-Billion Dollar Revenue Potential


- Local therapies include:
 - RFA, TACE and radiation
 - RFA is the dominant treatment with local recurrence rates >50% for lesions >3 cm
 - ThermoDox + RFA
 addresses limitations of
 current standard of care
 by "Expanding the
 Treatment Zone"

ThermoDox + RF Liver Ablation

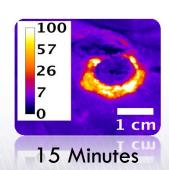
Expanding the Treatment Zone Addresses RFA Limitations

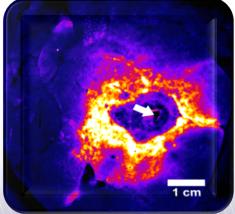
- ThermoDox infused IV
 ~15 minutes prior to
 sRFA
- RFA ablates tumor and creates a "Thermal Zone" in margin surrounding the tumor
- Doxorubicin is released in the "Thermal Zone" expanding treatment area and killing the metastases outside the ablation zone

RFA Dwell Time Matters!

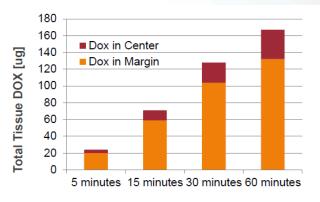
Learnings from the 700 patient HEAT Study

 Pre-specified analysis of HEAT Study data showed that patients with smaller lesions appeared to do better with ThermoDox.


When standardized for dwell time and lesion number then the ThermoDox patients


demonstrated difference in OS.

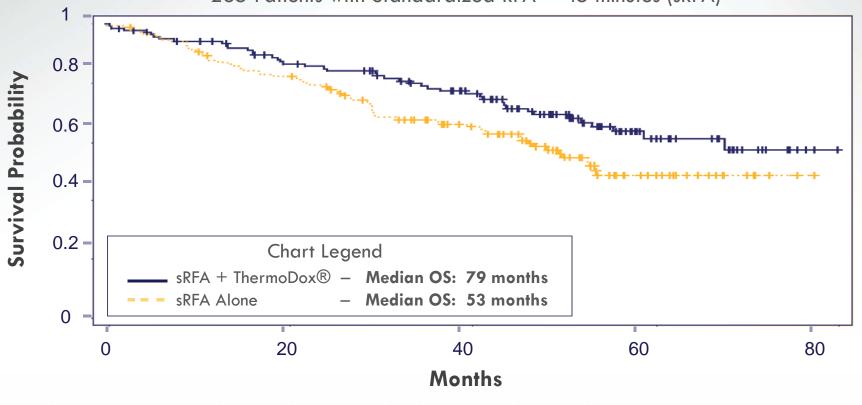
 The hypothesis that dwell time increases local doxorubicin concentration was then tested and demonstrated in computer simulation study.


The hypothesis was further tested and demonstrated

in an in vivo porcine model.

45 Minutes

Ablation TimeGasselhuber et al, *Int J Hyperthermia*, 2012



ThermoDox: HCC

Sub-Group Analysis of HEAT Study Data

Greater than Two Years Overall Survival Benefit

285 Patients with Standardized RFA > 45 minutes (sRFA)

Overall Survival as of 7/15/2015

HR=0.63 (95% CI 0.43 - 0.93)

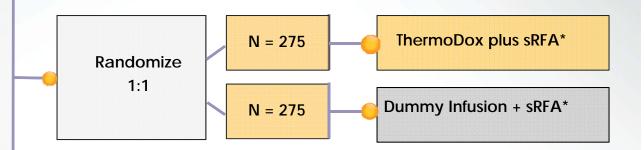
P Value = 0.0198

ThermoDox + RFA vs TACE

Intermediate HCC

HEAT Study	HEAT Study Lesion size		Median OS (mos)	Year 1 (%)	Year 2 (%)	Year 3 (%)
ITT Population	Overall: 2.7 - 7.5 cm Mean: 4.2 cm Median: 4 cm	223	48	85	76	64
	3 cm — 5 cm	183	NE	87	80	66
	5 cm – 7 cm	ı − 7 cm 40 45		75	58	54
ThermoDox + RFA ≥ 45 min.	Overall: 2.7 - 6.9 cm Mean: 4.3 cm Median: 4.2 cm	138	79	94	85	77
RFA alone time ≥ 45 min.	Overall: 3 - 6.9 cm Mean: 4.2 cm Median: 3.9 cm	147	54	88	79	69
Ikeda et al (TACE)	Median: 3.9; range 1-11	99	37	90	75	NR
2013	> 3.0	64	NR	NR	66	NR
Burrel (DEB TACE)	BCLC A	41	54	89.7	NR	67.8
2012	BCLC B	63	48	88.2	NR	64.4

HEAT Study Subgroup


Phase III OPTIMA Study Design

General Eligibility

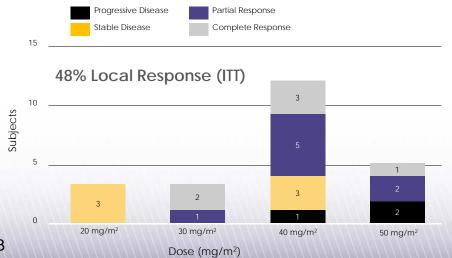
- Non-resectable HCC
- Single lesions
- Lesion > 3 cm but not > 7 cm
- Treatment naïve
- Child-Pugh A

Stratification

- Lesion size: 3-5 cm / 5-7 cm
- RFA Technique (Percutaneous, Laparoscopy, or Surgical)

Primary Endpoint Secondary Endpoints	Overall Survival (OS) Progression Free Survival; Safety				
Interim Efficacy Analysis	118 OS Events / HR < 0.61 158 OS Events / HR < 0.70				
Final Efficacy	197 OS Events / HR < 0.75				

First Patient Enrolled
Q3 - 2014
~80 Clinical Sites in
14 Countries



ThermoDox: RCW Breast Cancer

Difficult to Treat with Severe Complications

- Breast cancer recurring in the chest wall affects $\sim 35,000$ post-mastectomy patients in the US and Europe annually
- Up to 40% of women undergoing a mastectomy as primary treatment will experience local recurrence
- Local tumor control is a primary objective in treating these patients

Combined Phase 1 Data (n = 29)

Limited Treatment Options

Complete Response

Phase 2 US DIGNITY Study

Evaluate local-regional breast tumor response. 17 patients enrolled; 12 evaluable for efficacy

- All evaluable patients experienced stabilization of disease; 67% of patients in evaluable population observed local responses - 5 CRs & 3 PRs
- 47% Local Response (ITT)

ThermoDox: Euro-DIGNITY Study

ThermoDox + Hyperthermia + Radiation

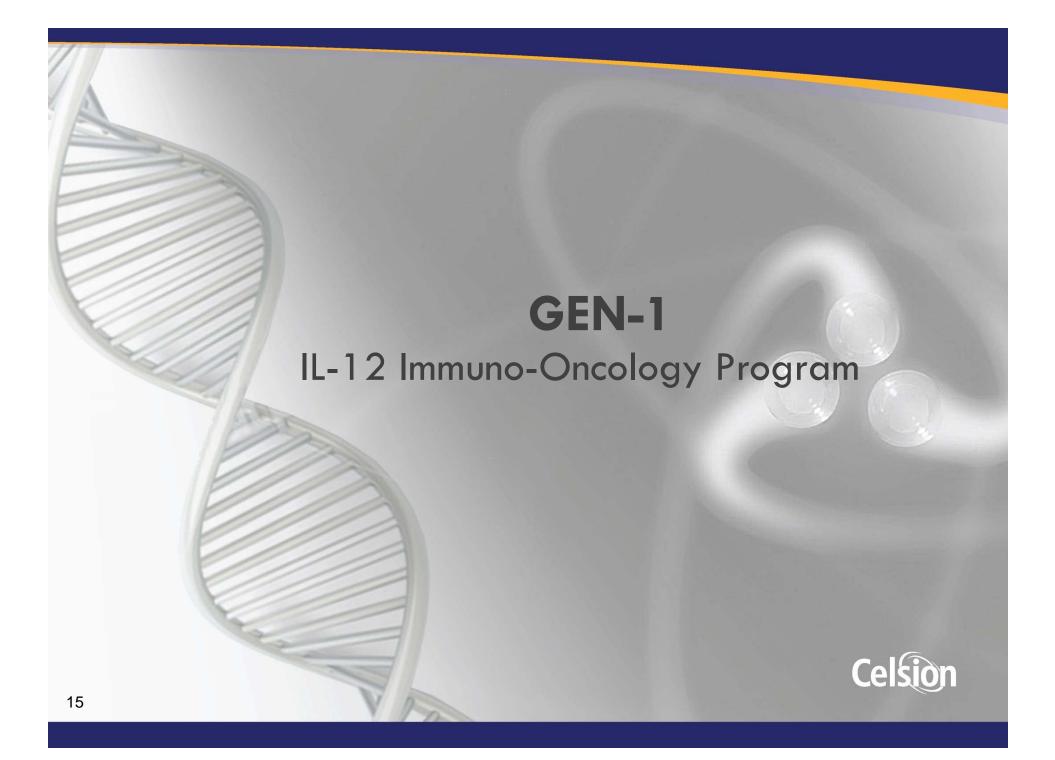
Primary Objectives

Evaluate complete and partial response after 3 cycles of ThermoDox +
 Hyperthermia and Radiation Treatment (Tri-Modal Therapy)

Evaluate loco-regional breast tumor control in patients undergoing

Tri-Modal Therapy

70 patients to be enrolled

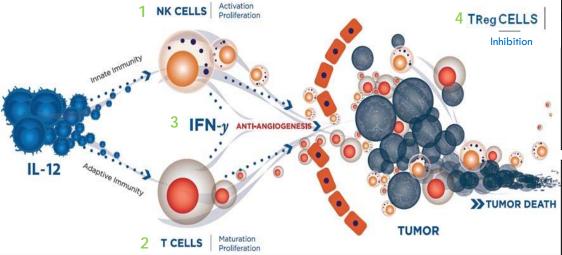

Open Label Design

Study Timelines

- Site Activation: 1st Half 2016
- Interim Efficacy Assessment: Q1 2017
- Recruitment Period: 2016 2017
- LP/LV through Follow-Up: 2018

IL-12 Immunotherapy

Powerful Immune Modulating Agent


Multiple Mechanisms of Action

1. NK Cell Activation

3. Anti-angiogenesis

2. T Cell Activation 4. T Reg Inhibition

TUMOR DEATH

Journal of Translational Medicine BioMed Central

Open Access

Angiostatin anti-angiogenesis requires IL-12: The innate immune system as a key target

Adriana Albini*†1, Claudio Brigati†2, Agostina Ventura³, Girieca Lorusso¹,4, Marta Pinter⁴, Monica Morini², Alessandra Mancino⁵, Antonio Sica^{5,6} and Douglas M Noonan^{1,4}

Int. J. Cancer: 78, 361-365 (1998) © 1998 Wiley-Liss, Inc.

Publication of the International Union Against Cancer Publication de l'Union Internationale Contre le Cance

IL-12 REGULATES VEGF AND MMPs IN A MURINE BREAST CANCER MODEL

Sergio Dias*, Robert Boyd and Frances Balkwill

Biological Therapies Laboratory, Imperial Cancer Research Fund, London, UK

potent anti-angiogenic effects which contribute to tumor regression. After 7 days of treatment, levels of tumor VEGF protein decline markedly and are undetectable at 14 days. This decline is accompanied by a Iall in MMP-9 and, as the tumors regress, an increase in its natural inhibitor, TIMP-1. A cell line established from the primary tumor produced VEGF in vitro. IFN-y reduced tumor cell production of VEGF over a in vitro. IFN-y reduced tumor cell production of VEGF over a 24-hr period in vitro, suggesting that IL-12-induced IFN-y may be responsible for the decline in VEGF levels in vivo. There is also in vitro evidence that IL-12 regulates stromal cell interac-tions, leading to decreased MMP-9 and increased TIMP-1 production. Thus, we suggest that at least 2 mechanisms are productors in IL-12 regulation of angiogenesis, removing the pro-angiogenic stimulus and blocking the release and activity of MMPs. Int. J. Cancer 78:361–365, 1998.

In a murine model of breast cancer, IL-12 therapy exerts rotent anti-angiogenic effects which contribute to tumor provided by Roussel UCLAF (Romainville, France). Cytokines were diluted to 10 µg/ml in PBS/0.1% murine serum albumin (Sigma, Poole, UK) and stored at -70°C prior to use. An MMP inhibitor, BB-2116, was kindly provided by British Biotech Pharmaceuticals (Oxford, UK). This inhibitor was used at a concentration of 30 mM. Finally, an anti-mouse VEGF-blocking antibody (Autogen Bioclear; Santa Cruz, Santa Cruz, CA) was used at a concentration of 0.5 µg/ml.

The murine T-cell line EL4-nob was provided by Dr. D. Cantrell (ICRF, London, UK). The macrophage cell line J774 was also used (for details, see Yoshida et al., 1994). Both were cultured in RPMI 1640 with 10% FCS (Sigma), supplemented with 2 mM L-glutamine,

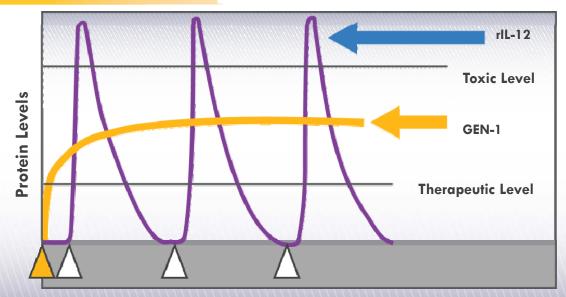
Klinke Journal for ImmunoTherapy of Cancer (2015) 3:27 DOI 10.1186/s40425-015-0069-x

REVIEW

Open Access

Enhancing the discovery and development of immunotherapies for cancer using quantitative and systems pharmacology: Interleukin-12 as a case study

David J Klinke II


GEN-1

Novel "Polymer - Interluken 12 Plasmid" DNA Nanoparticle

Rationale for Local Therapy with GEN-1 DNA Nanoparticles

- Loco-regional production of potent cytokine IL-12 avoid toxicities and poor PK associated with systemic recombinant IL-12
- Persistent local delivery of IL-12 lasts up to one week and dosing can be repeated
- Ideal for long-term maintenance therapy

GEN-1 is an effective alternative to rIL-12 Poor PK

100 nm

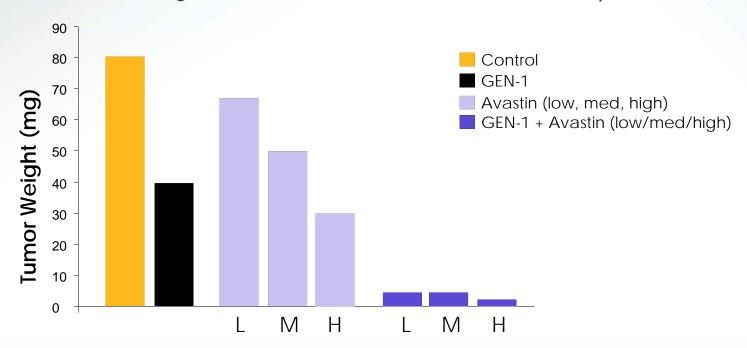
Ovarian Cancer

Large and Deadly Global Cancer

- 8th most diagnosed cancer among women
 - 225,000 annual incidence worldwide
 - 22,280 in US and 100,000 in developed countries
 - 14,240 deaths in 2015

- 5th highest mortality among women
 - 5-year survival rate for all stages is 45%
 - Survival rate reduces dramatically if not localized cancer
 - 15% diagnosed with localized cancer, eligible for potentially curative surgery

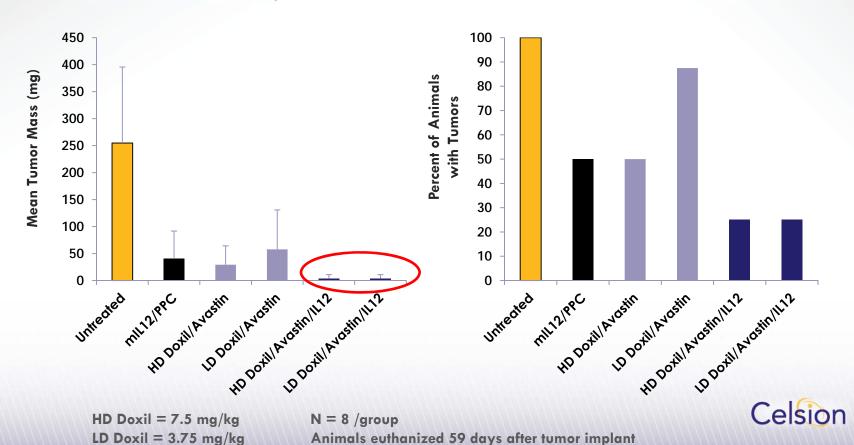
- Local therapies for ovarian cancer
 - Ovarian cancer is not diagnosed early - spreads to regional/mets requiring combo regimens
 - Most common site of recurrence in abdomen importance of intraperitoneal administered therapy
 - GEN-1 administered IP;
 ideal adjuvant to SoC
 therapy


Sources: Cancer Statistics, American Cancer Society; Globocan; SEER database

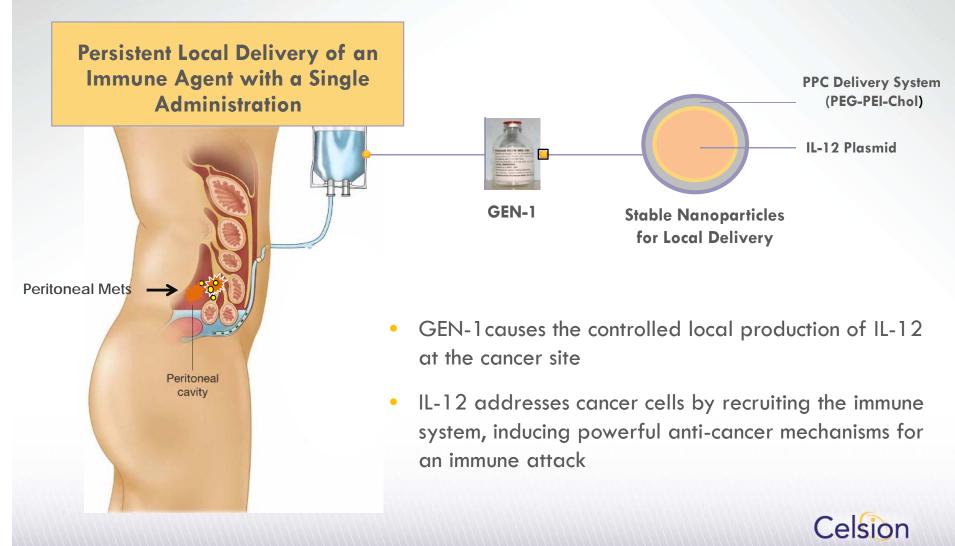
GEN-1 Preclinical Studies

Combination with Avastin

- As a single agent, Gen-1 is comparable to Avastin
- Combining GEN-1 with Avastin Yields Dramatic Improvement Activity

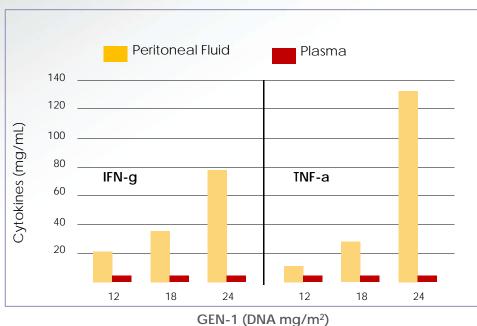

 7×10^6 SKOV3 human ovarian cancer cells were implanted IP. Avastin treatment at three different doses (5 mg/kg (low), 10 mg/kg (medium), and 20 mg/kg (high)) was initiated 9 days after tumor implantation; pmlL-12/PPC was given weekly for 4 weeks 14 days after tumor implantation.

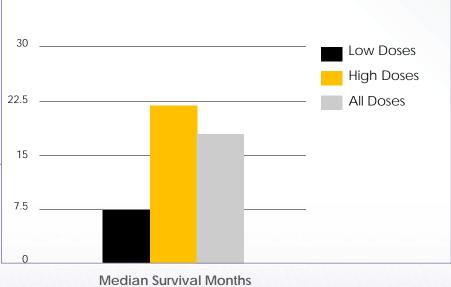
GEN-1 Preclinical Studies


GEN-1 + Doxil + Avastin

- Doxil + Avastin is SoC for platinum-resistant ovarian cancer (2nd line)
- GEN-1 + Doxil +Avastin Treatment Resulted in a > 98% Reduction in Tumor Burden Compared to Untreated Animals

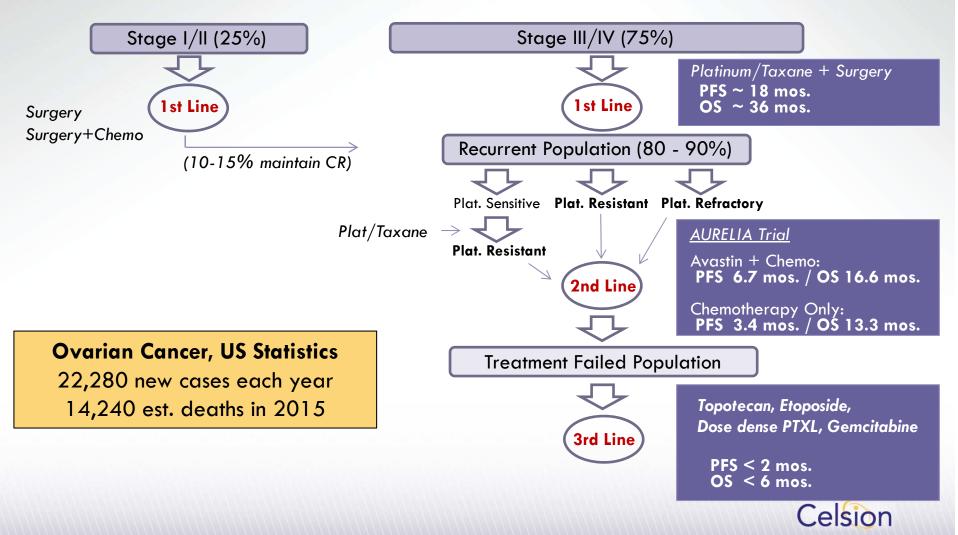
GEN-1 for Ovarian Cancer


Local Immunotherapy

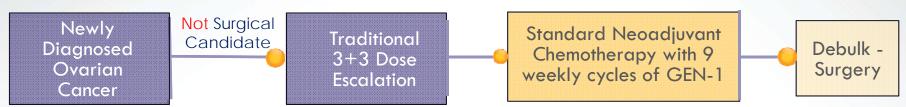

GEN-1 Immunotherapy

Clinical Experience To-Date

Biological Activity



Single Agent Benefit


Ovarian Cancer Treatment Path

GEN-1Phase I Study

1st line in Ovarian Cancer

The OVATION Study

Neoadjuvant Study in Newly Diagnosed Ovarian Cancer Patients	To determine safety, dose, and feasibility in target patient population
Primary Endpoint	Optimal Therapeutic Dose
Secondary Endpoints	cOR, pCR, PFS, ↑IFNγ, ↑IL-12, ↓VEGF and Tumor-specific T-cell response CD4+,CD8+

OVATION Study

Clinical Experience To-Date

Cohort 1 36 mg/m²	FIGO Stage	Tumor Response RECIST	Surgical De-bulking Status	CA-12 Baseline	5 Levels (U/r Post TX	nL) * 2 Weeks Post TX	Pathological Results **
OV01-01 (01)	IV	Stable Disease	Optimal R1	362.0	9.0 -97.5%	6.4 -98.2%	macroPR
OV01-02 (02)	IIIB	Stable Disease	RO	246.0	28.0 -88.6%	7.9 -96.8%	microPR
OV01-04 (05)	IIIC	Complete Response	R0	423.0	64.4 -84.8%	16.3 -96.1%	Complete Pathological Response (pCR)

^{* 50%} reduction in CA-125 levels from baseline that is maintained for greater than 2 weeks is considered a CA-125 Responder

^{**} In a 332 patient GOG Study, pCR's were seen in only 6.5% of patients; Strong correlation with improvement in Overall Survival (median OS of 72 mos.) which is a 3 year improvement over patients having a microPR or macroPR (Pvalue = 0.018)

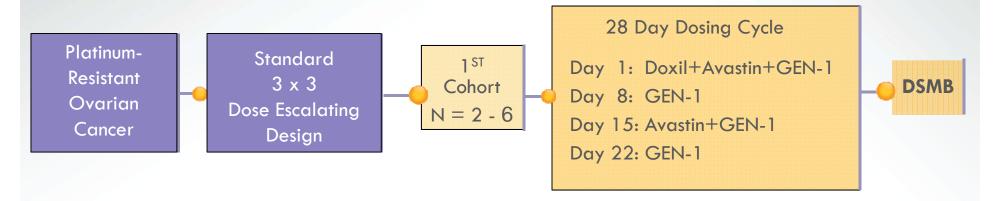
GEN-1 + Doxil Phase 1b Trial

2nd Line (completed Dec. 2014)

GEN-1 (mg/m²)	Doxil (mg/m²)
24	40
36	40
36	50

Clinical Observations

- All doses well tolerated with no DLTs
- Clear dose responses at 36 mg/m² dose
 - CRR (SD+PR+CR) (all doses): > **50**%
 - CRR (SD+PR+CR) at highest dose: 86%
- Compares favorably to single agent Doxil in 4 previous studies:
 - CRR (SD+PR+CR) < 50%


Translational Data Findings

- Significant increase in immunologically active IL-12 levels in peritoneal fluid
 - Detectable for at least one week after GEN-1 dosing
 - Not detectable or very low in plasma
- Significant increase in key downstream mediators of IL-12
 - IFN- γ and TNF- α : ~5-fold increase observed in peritoneal fluid above pre-treatment level with the highest increase observed at 77-fold
 - Very low to non-detectable levels of IFN γ and TNF- α in plasma

GEN-1 + Avastin and Doxil Trial Design

2nd Line

Primary Endpoint Phase I Primary Endpoint Phase II	Optimal Safe Dose (Max or MTD) Clinical Objective Tumor Response (RECIST)
Secondary Endpoint	IL-12, IFN-γ, TNF-α, VEGF
Treatment period	28 day cycles continue until GEN-1 or Avastin treatment is no longer tolerated

Strong Patent and Regulatory Protection

ThermoDox (LTSL)

Composition of Matter Patent (2021)
Method Patents (2026)

Orphan Drug Designation for HCC

- U.S. 7 year exclusivity
- Europe -10 year exclusivity
- Eligible for 5 year Hatch-Waxman (2031)
- No immediate ANDA route to registration

Composition of Matter Patent (2027) Methods Patents (2017)

Orphan Designation for Ovarian and GBM

- U.S. 7 year exclusivity
- No ANDA route to registration

Milestone Events (2016-2018)

	2016				2017			2018			
	Q1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
ThermoDox											
OPTIMA	Initiate Enrollment in	HEAT Study OS Data	OPTIMA				OPTIMA Enrollment			1 st Interim Efficacy	
STUDY	China V		50% Complete				Complete			Endpoint	
31001	Cilila	(Cillia Collon)	30 /0 Complete				Complete			Enaponn	
					1 st Efficacy				Final Data		
Euro-DIGNITY		Initiate			Assessment		Enrollment		Assessment		
STUDY		Enrollment			(24 pts)		Complete		(70 pts)		
GEN-1											
OVATION STUDY	Efficacy & TR Data from Cohorts 1 & 2		Final Data from OVATION								
Avastin+Doxil Study	TR Data from Phase 1b Pre-Clin Data Ovarian Study at AACR	Submit IND for Ph 1/2 Study	Initiate Enrollment				Efficacy & TR data from Phase 1	Initiate Phase 2 Study			
TheraSilence											
	Pre-Clin Data (Collaboration w/ RNA		Potential Co- Development								
Lung Cancer	company		Collaboration								

Corporate Information

Celsion Corporation
997 Lenox Drive
Suite 100
Lawrenceville, NJ 08648

P 609-896-9100

F 609-896-2200

www.celsion.com

NASDAQ: CLSN

