Celsion

2018 Disruptive Growth and Healthcare Conference hosted by RHK Capital and Reed Smith May 8, 2018

Safe Harbor Statement

This presentation and any statements made for and during any presentation or meeting contain forward-looking statements related to Celsion Corporation ("Celsion") under the safe harbor provisions of Section 21E of the Private Securities Litigation Reform Act of 1995 and are subject to risks and uncertainties that could cause actual results to differ materially from those projected.

These statements may be identified by the use of forward-looking words such as "anticipate," "planned," "believe," "forecast," "estimated," "expected," and "intend," among others. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. Such factors include, among other things, unforeseen changes in the course of research and development activities and in clinical trials; possible changes in cost, timing and progress of development, preclinical studies, clinical trials and regulatory submissions; Celsion's ability to obtain and maintain regulatory approval of any of its product candidates; possible changes in capital structure, financial condition, future working capital needs and other financial items; changes in approaches to medical treatment; introduction of new products by others; success or failure of our current or future collaboration arrangements, risks and uncertainties associated with possible acquisitions of other technologies, assets or businesses; the ability to obtain additional funds for operations; the ability to obtain and maintain intellectual property protection for technologies and product candidates; possible actions by customers, suppliers, strategic partners, potential strategic partners, competitors and regulatory authorities; compliance with listing standards of The NASDAQ Capital Market; and those risks listed under "Risk Factors" as set forth in Celsion's most recent periodic reports filed with the Securities and Exchange Commission, including Celsion's Form 10-K for the year ended December 31, 2017.

While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Forward-looking statements included herein are made as of the date hereof, and Celsion does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances except as required by law.

Clinical-Stage Oncology Company

Two Nanoparticle-Based Technology Platforms Driving Growth

ltsl

Lysolipid Thermally Sensitive Liposomes (LTSL) Known Chemotherapeutics

ThermoDox®

Targeted Doxorubicin Delivery

- Phase III Study Enrolling in Liver Cancer
- Phase II Study in Recurrent Chest Wall
 Breast Cancer

TheraPlas

Synthetic Non-viral Vector DNA Plasmids Coded for Therapeutic Proteins

Localized Interleukin-12 (IL-12) Immunotherapy

- Neoadjuvant Study in 1st Line Ovarian
- Phase II Ready

Celsion Proprietary Therapeutic Pipeline

Capital-Efficient Drug Development

	INDICATION	PRODUCT CANDIDATE	PRE-CLINICAL PH	HASE 1-2	PHASE 3
Clinical	Primary Liver Cancer	ThermoDox/OPTIMA Study			Enrolling Phase III ~85% Complete
Cli	Ovarian Cancer	GEN-1/OVATION II Study	Ini	itiating Phase I/	/11
Pre-Clinical	Non Muscle Invasive Bladder Cancer	ThermoDox	Efficacy/Safe	ty/Toxicology C	Complete
Pre-(Glioblastoma	GEN-1	Efficacy/Safety/Toxico	ology Complete	

ThermoDox®

Hepatocellular Carcinoma (HCC)

High Global Incidence and Mortality

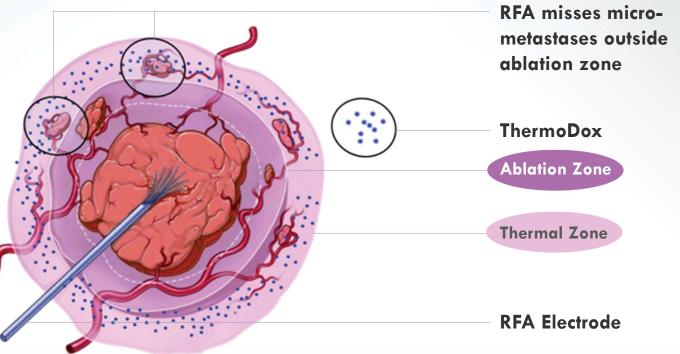
- 5th most prevalent
 - 850,000 global incidence growing 5% annually
 - By 2030, expected to be the #3 cancer
 - China has 50% of new cases; 75% in Asia

6

- 9 4th highest mortality
 - 5-year survival rate less than 10%
 - Median survival from time of diagnosis is less than 3 years¹
 - Curative surgery is possible in less than 20% of patients¹

- Ourrent local therapies include:
 - Radiofrequency Ablation (RFA), transarterial chemoembolization (TACE) and radiation
 - RFA is the dominant treatment with local recurrence rates
 >50% for lesions >3 cm

Addressable Market Opportunity >200K Patients

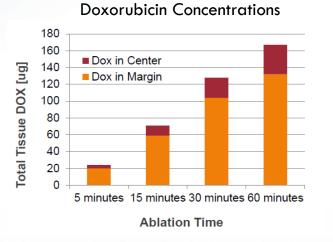


¹ Journal of Hepatology 2012 vol. 56 | 908-943

ThermoDox + Radiofrequency Ablation

Designed to Address RFA Limitations by Expanding Treatment Zone

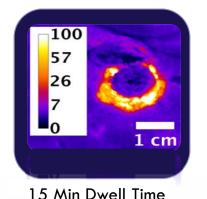
- ThermoDox infused IV ~15 minutes prior to radiofrequency ablation
- RFA ablates tumor and creates a "Thermal Zone" in margin surrounding the tumor
- Doxorubicin is released in the "Thermal Zone" expanding treatment area and killing the metastases outside the ablation zone

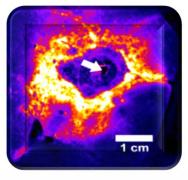


Celsion

HEAT Study: RFA Dwell Time Matters

701-Patient HEAT Study Results Inform ThermoDox+ RFA Clinical Plan


- Pre-specified analysis of completed HEAT Study data showed that patients with smaller HCC lesions (3-5 cm) appeared to have better outcomes with ThermoDox
- Dwell time effect on increasing local doxorubicin demonstrated in a computational model and an *in-vivo* porcine model.*

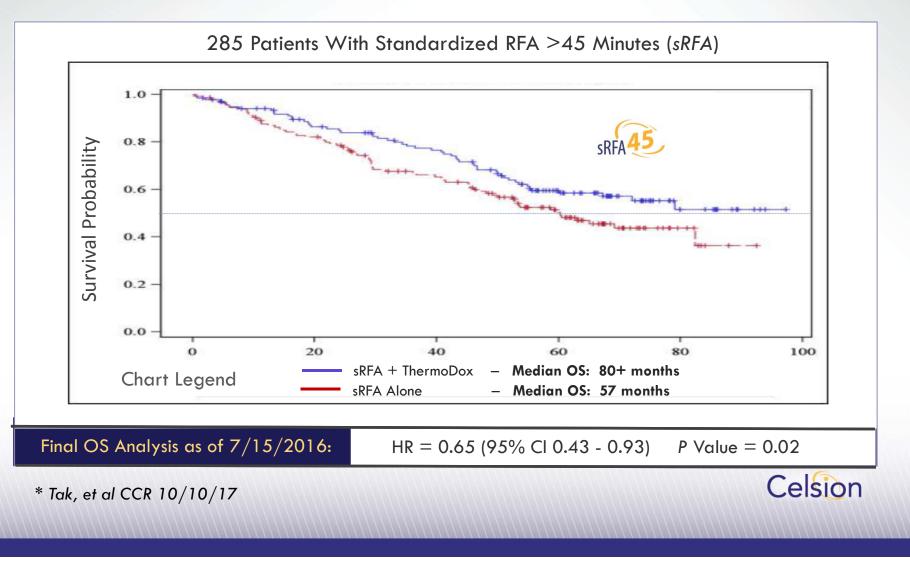


8

Computational Model

Porcine Model More RFA time = More local Dox deposition

45 Min Dwell Time


 Multivariate analysis substantiates RFA dwell time with ThermoDox as the factor correlating to significant improvement in overall survival
 Celsion

* Gasselhuber, et al, Int J. Hyperthermia 2010 & Swensen, et al, Plos One, 10/15

HEAT Study Sub-Group Analysis

9

When standardized for dwell time and number of lesions, patients given ThermoDox + RFA demonstrated a two-year improvement in overall survival*

RFA Dwell Time Matters

Independent NIH Analysis Supports Conclusions from HEAT Study

Evaluated RFA burn time per tumor volume (min/ml) for correlation with clinical outcome

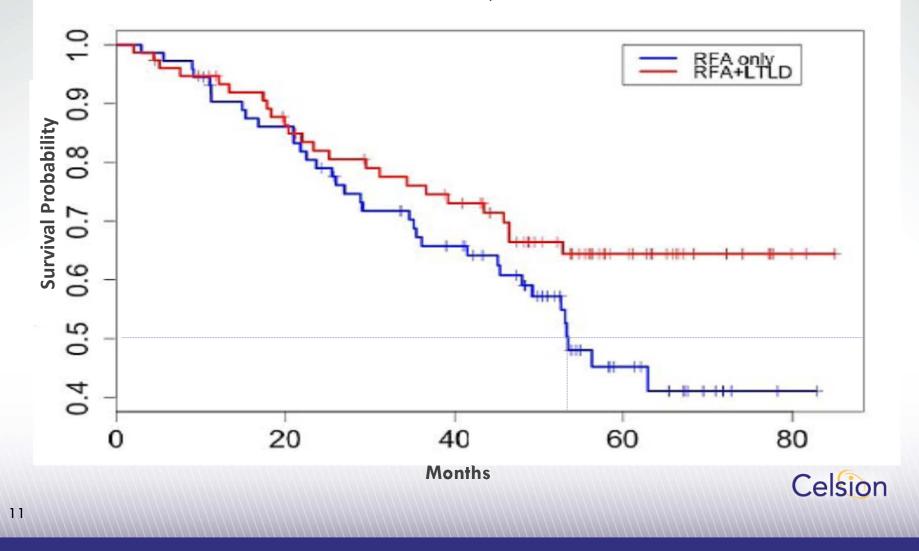
Overall Findings

Increase in *burn time* per tumor volume improved Overall Survival (OS) in ThermoDox® + RFA patients compared to RFA only patients, n=437

• For all single lesion RFA + ThermoDox® patients:

One unit increase in RFA duration per tumor volume improved OS by 20%, n=227

- More dramatic differences in subgroup of patients with RFA burn times per tumor volume > 2.5 minutes/ml
- Cox multiple covariate analysis showed OS to be significant (p=0.038, HR=0.85)


For all single lesion RFA-only patients:

Burn time per tumor volume did <u>not</u> have a significant effect, n=210

Celsion

NIH Analysis Supports HEAT Study Sub-Group

Subjects with burn time > 2.5 min/ml (\sim 45mins for 3 cm tumors)

ThermoDox + RFA HEAT Study Analysis

Relative to TACE – Intermediate HCC Patient Population

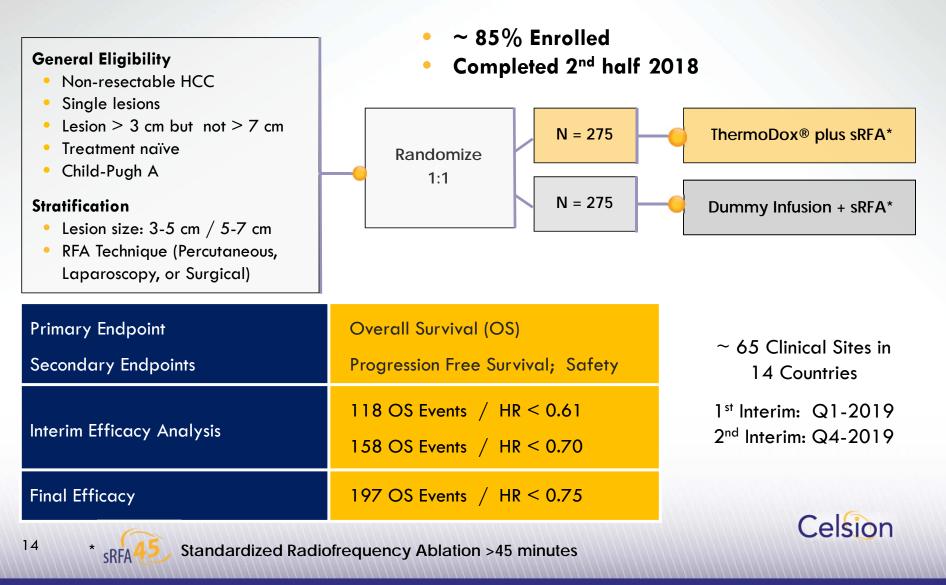
	Study	Lesion size	N	Median OS (mos.)	Year 1 (%)	Year 2 (%)	Year 3 (%)
	HEAT Study ITT Population	Overall: 2.7 - 7.5 cm Mean: 4.2 cm Median: 4 cm	701	53 mos.	85%	76%	64%
HEAT Study Subgroup	ThermoDox® + RFA ≥ 45 min.	Overall: 2.7 - 6.9 cm Mean: 4.3 cm Median: 4.2 cm	138	80+ mos.	94 %	85%	77%
HEAT Stud	RFA alone time ≥ 45 min.	Overall: 3 - 6.9 cm Mean: 4.2 cm Median: 3.9 cm	147	57 mos.	88%	79%	69%
	lkeda et al (TACE)	Median: 3.9; range 1-11	99	37 mos.	90%	75%	NR
	2013	> 3.0	64	NR	NR	66%	NR
	Burrel (DEB TACE)	BCLC A	41	54 mos.	90%	NR	68%
	2012	BCLC B	63	48 mos.	88%	NR	64%
						(Celsion

DEB TACE – Doxorubicin Eluding Beads (DEB) Transarterial Chemoembolization (TACE)

13

The Clinical Management of Hepatocellular Carcinoma in the United States, Europe, and Asia

A Comprehensive and Evidence-Based Comparison and Review


Zhi Ven Fong, MD; and Kenneth K. Tanabe, MD

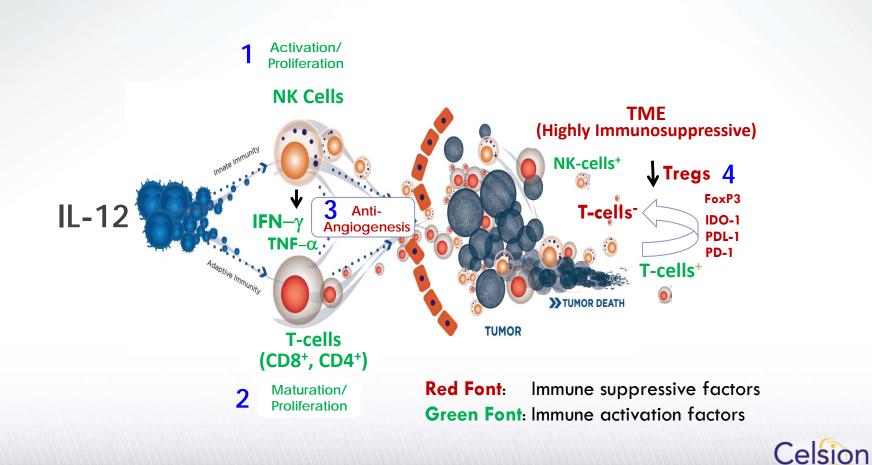
Hepatocellular carcinoma (HCC), the most common primary malignancy of the liver, represents 1 of the leading causes of cancer deaths in the world with an estimated 21,670 deaths in the United States in 2013. In contrast to other malignancies, there is an array of treatment options for HCC involving several specialties in the multidisciplinary care of the patient. Consequently, vast heterogeneity in management tendencies has been observed. The objective of this report was to review and compare guidelines on the management of HCC from the United States (National Comprehensive Cancer Network), Europe (European Association for the Study of the

Resectio	5. Survival on and Rad Carcinoma ize	liofreq	uency	Ablation of	of Hep	ato-		
T	3-Year C	S Rate,	%	3-Year Di	FS Rate	e, %		
Tumor Size, cm	Resection	RFA	Ρ	Resection	RFA	Ρ	HEAT Study showed	
≤3 >3	79 59	50 24	NS .007	67 43	34 12	NS .003	3-Year OS Rate of 77% (July 2015)	
	ns: DFS, diseas A, radiofrequenc		-	NS, nonsignifica	ant; OS,	overall	Celsion	

Phase III OPTIMA Study Design

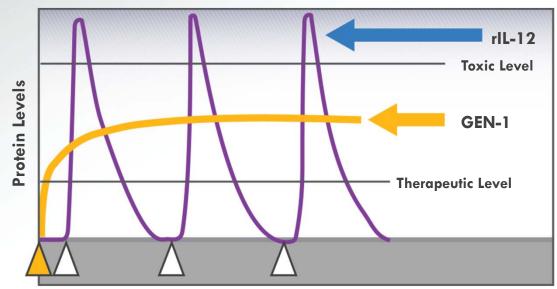
Applying Learnings From HEAT Study to OPTIMA

GEN-1 IL-12 Immuno-Oncology Program



Interleukin-12

16


A Powerful Immune-Modulating Agent; Multiple Mechanisms

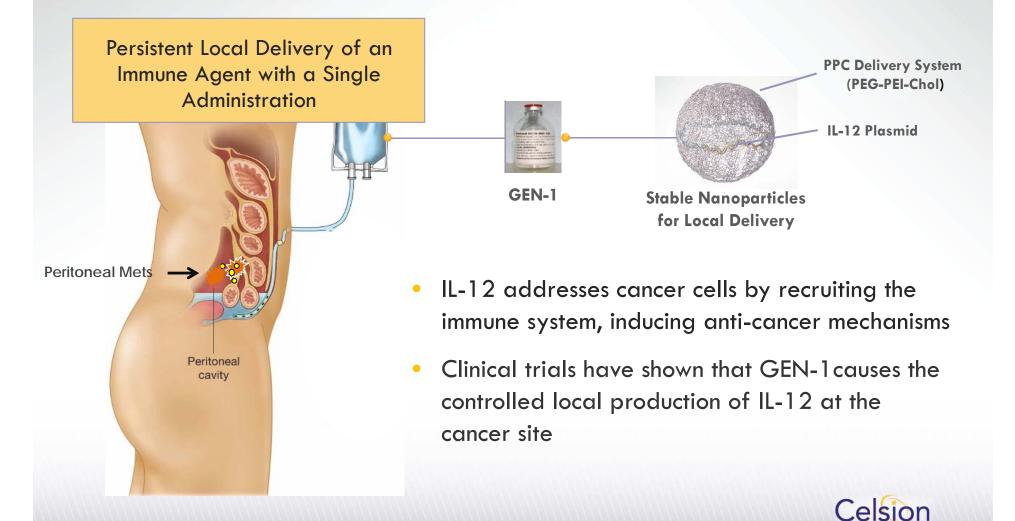
Four Distinct Mechanisms of Immune Modulation by IL-12

GEN-1: Designed to Address IL-12 Toxicity

Rationale for Local Therapy with GEN-1 DNA Nanoparticles

Poor kinetics requires frequent and high doses of rIL-12

GEN-1 provides persistent local therapy


Celsion

GEN-1 addresses rIL-12 Poor Pharmacokinetics (pK)

- Loco-regional production of IL-12 avoids toxicities and poor pK of systemic rIL-12
- Persistent local delivery of IL-12 lasts up to one week and
- Dosing can be repeated
- Potential utility for long-term maintenance therapy

GEN-1 for Treatment of Ovarian Cancer

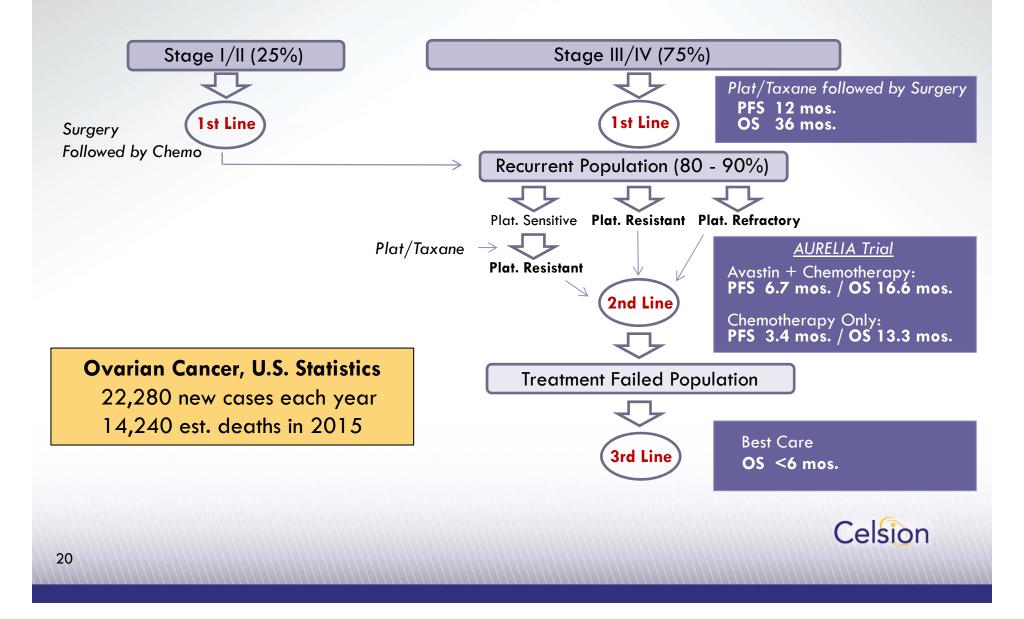
Local Immunotherapy

Ovarian Cancer

High Global Incidence and Mortality¹

- 8th most diagnosed cancer among women
 - 225,000 annual incidence worldwide
 - 22,280 in U.S. and 100,000 in developed countries
 - 14,240 deaths from ovarian cancer in the U.S. (2015)

- 5th highest mortality among women
 - 5-year survival rate for all stages is >50%
 - Survival rate dramatically reduced if not localized cancer
 - 15% diagnosed with localized cancer, eligible for potentially curative surgery


- Local therapies for ovarian cancer
 - Ovarian cancer is not diagnosed early – over 60% of women diagnosed with Stage III/IV
 - Most common site of recurrence in abdomen importance of intraperitoneal-administered therapy

Addressable Market Opportunity >100K Patients

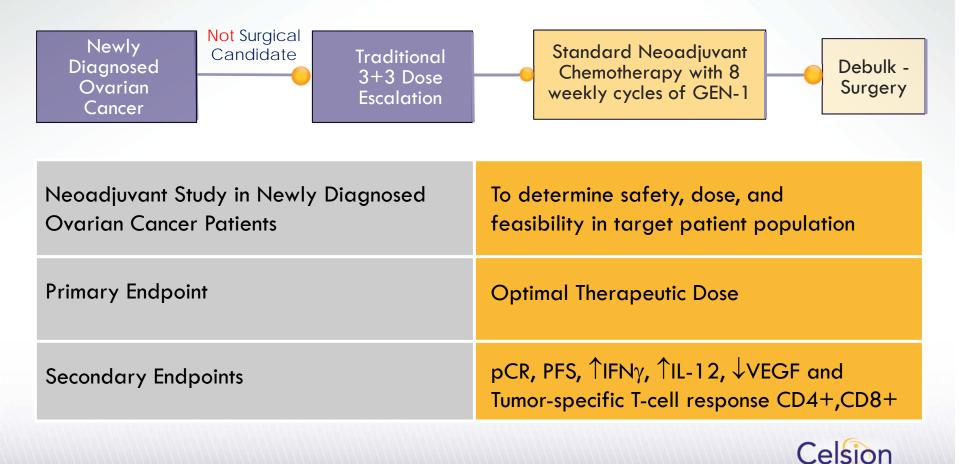
¹ Sources: Cancer Statistics, American Cancer Society; Globocan; SEER database

Ovarian Cancer Treatment Path

Clinical Experience With GEN-1 in Ovarian Cancer

- Multiple trials completed, 75 patients treated
- Shown to be well-tolerated
- Clear evidence of biological activity & clinical benefit have been demonstrated
- Maximum Tolerated Dose has not been reached

Study	Mono/Combo	Study Phase	Disease	Ν
GEN-1-101	Monotherapy	1	Platinum-resistant	13
GOG-170Q*	Monotherapy	н	Platinum-resistant	20
GEN-1-201	+ Carboplatin/Docetaxel	I.	Platinum-sensitive	13
GOG-9928*	+ Doxil	lb	Platinum-resistant	14
OVATION	+ Carboplatin/Taxol	1	Newly diagnosed	15


Celsion

* Studies conducted by NCI-NRG (Gynecologic Oncology Group - GOG)

GEN-1 Phase I Study

1st Line in Ovarian Cancer

OVATION I Study

22

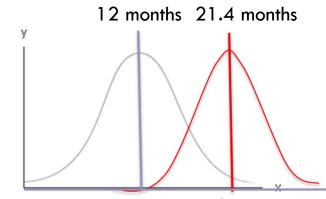
OVATION I Study

Final Efficacy Results

	36 mg/m²	47 mg/m ²	61 mg/m²	79 mg/m ²	
RECIST Response	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
Complete Response	1, 33.3%	0, 0%	0, 0%	1, 20%	2, 14%
Partial Response	0, 0%	3, 100%	3, 100%	4, 80%	10, 72%
Stable Disease	2, 66.6%	0, 0%	0, 0%	0, 0%	2, 14%
Interval Debulking Status	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
RO	2, 66.6%	0, 0%	2, 66.6%	5, 100%	9, 64.3%
R1	1, 33.3%	2, 66.6%	0, 0%	0, 0%	3, 21.4%
R2	0, 0%	1, 33.3%	1, 33.3%	0, 0%	2, 14.3%
Pathological Response	Cohort 1 (n=3)	Cohort 2 (n=3)	Cohort 3 (n=3)	Cohort 4 (n=5)	Total (n=14)
cPR	1, 33.3%	0, 0%	0, 0%	0, 0%	1,7%
microPR	1, 33.3%	2, 66.6%	1, 33.3%	3, 60%	7, 50%
macroPR	1, 33.3%	1, 33.3%	2, 66.6%	2, 40%	6, 43%

• All patients showed a > 90% drop in their CA-125 protein levels

• 50% reduction in CA-125 levels maintained for > 2 weeks is considered a CA-125 Responder



Celsion

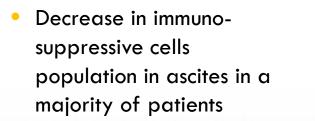
OVATION Study

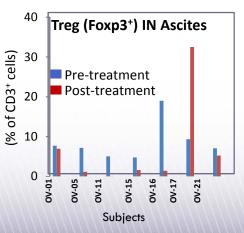
Progression Free Survival Estimates

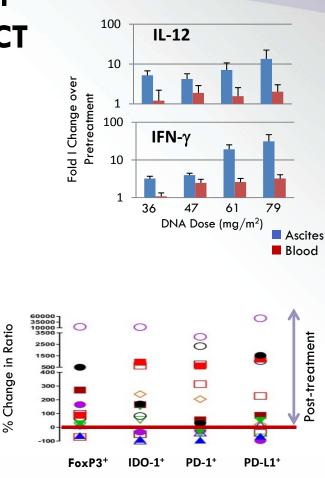
Current Estimated Median PFS	21.4 months
Historical Estimated PFS	12.0 months

Historical Current

Cohort (mg/m²)	PFS	Progression
36	19.25	3/3
47	22.6+	0/3
61	18.7+	1/3
79	16.2+	2/5*


* One patient dropped out after 2 treatments and progressed




+ Data not mature

Shift in TME: Favoring Immune Stimulation Over Suppression Following GEN-1 + NACT

- Dose dependent local increase in immune cytokines, IL-12 and IFN-γ, at the tumor site (ascites) but not as much in blood
- Increase in the ratio of immunostimulatory T-cells (CD8⁺) to immunosuppressive T-cell signals (FoxP3+, IDO-1+, PD-1+, PDL-1+) in approximately 70% of patients

Celsion

GEN-1 Phase I/II Study 1st Line in Advanced Ovarian Cancer **OVATION II Study** Standard Newly Diagnosed Interval Neoadjuvant NAC with 9 Advanced Stage Chemotherapy weekly cycles Debulking (NAC) with 8 weekly of GEN-1 **Ovarian** Cancer Surgery cycles of GEN-1 Neoadjuvant Study in Newly Diagnosed To determine early efficacy, biological activity and Advanced Stage Ovarian Cancer Patients safety with NAC in advanced ovarian cancer (FIGO IIIC & IV) **Primary Endpoint Progression Free Survival Objective Clinical Response, Pathological Complete** Secondary Endpoints Response, Surgical Response, Safety, Biological Activity, and Serum CA-125 Concentrations

GEN-1 Phase I/II Study

OVATION II Study Design

Arm	Treatment					Before II	DS				Interval Debulking Surgery					After ID	s			
		C1D1	C1D8	C1D15	C2D1	C2D8	C2D15	C3D1	C3D8	C3D15	Surgery	C4D1	C4D8	C4D15	C5D1	C5D8	C5D15	C6D1	C6D8	C6D15
	Carboplatin	Х			X			X				X			Х			X		
Arm 1	Paclitaxel	Х			X			X			Х	X			Х			X		
	GEN-1		X	Х	X	X	X	X	X	X		X	Х	X	X	X	Х	X	X	X
A	Carboplatin	Х			Х			X				Х			Х			Х		
Arm 2	Paclitaxel	Х			X			X			x	Х			Х			Х		
(control)	Placebo																			

- 130 patients
- Primary Endpoint = PFS
- Subjects randomized 1:1 on standard neoadjuvant chemotherapy (NAC) vs. standard NAC + GEN-1

Milestones & Financials

Major Milestone Events & Over 2 years of Cash

	2018					2019)		2020				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
ThermoDox													
OPTIMA Study		DMC Review	Enrollment		1 st Interim			2nd Interim			Final OS		
Phase III Trial		After 75%	Complete		Efficacy			Efficacy			Endpoint		
		Enrollment			(118 events)			(158 events)			(197 events)		
GEN-1													
OVATION I	Interim PFS		Final PFS										
Phase IB Dose	Data from		Data from										
Escalating Trial	Cohorts 1-4		Cohorts 1-4										
		Initiate		Data from	Initiate			Complete			Final PFS		
OVATION II	Final IND	Enrollment	*	Dose Escalating	Enrollment	*	*	Enrollment	*	*	Data from		
Phase I/II Trial	Submission	Phase I		Phase Portion	Phase II			130 pts			Phase II		
* Open Label Design	n Will Allow For Po	eriodic Reporting	of Results										
\$25.5M							Q3 2019						
in cash							Q3 2019						
					\$10M N	DL Sale				Q2	2020		
										,			
										(
												• • • • •	

Financial Overview

Cash & Investments as of 1/10/18	\$25.5 million
Estimated cash usage per month	\sim \$1.33 million
Market Capitalization	\$42 million
Common shares outstanding	17.7 million
Fully diluted shares outstanding	21.5 million
Avg. Daily Trading Volume	~ 350,000

Corporate Information

Celsion Corporation 997 Lenox Drive Suite 100 Lawrenceville, NJ 08648

> P 609-896-9100 F 609-896-2200 www.celsion.com NASDAQ: CLSN

