CIRSE 2012 Lisbon Portugal

Combining Thermal Ablation with Thermosensitive Liposomes

Ronnie T.P. Poon, MD, PhD Chair Professor & Chief of Hepatobiliary and Pancreatic Surgery Department of Surgery Queen Mary Hospital The University of Hong Kong

Financial Disclosure

- Advisory Board member of Celsion Ltd.
- Asia-Pacific lead PI of Phase III Randomized Trial of Thermodox in Combination with RFA for HCC (HEAT study)

Local Ablative Therapies for Cancers

- Ethanol injection
- Cryotherapy
- Radiofrequency ablation
- Microwave
- High intensity focused ultrasound
- Electroporation

Indications for liver cancer: < 5 cm tumor, </= 4 tumor nodules

Thermal ablation

RFA for HCC < 5 cm Complete Ablation Rate

Study	No. of patients	Route of RFA	Complete ablation
Curley 2000	110	Percut (76) Lap (31) Open (3)	100%
Giovannini 03	53	Percut	92.8%
Vivarelli 04	79	Percut	87%
Poon 04	86	Percut (35) Lap (3) Open (48)	93%

Local Recurrence after RFA for HCC

Study	No. of patients	Median follow-up (months)	Local recurrence
Buscarini 01	88	34	14%
Giovannini 03	56	14	7%
Vivarelli 04	79	15.6	15%
Poon 04	86	11.5	6.2%
Lencioni 05	187	24	5.3%
Marchi 05	65	20	17%
Ng 08	207	26	14.5%

Local Recurrence after RFA for HCC

Incomplete necrosis of tumor cells in ablated lesion

 Complete necrosis only in 29 of 38 (83%) tumors ablated by RFA followed by liver transplantation based on histological examination of explants

Lu et al. Radiology 2005

Untreated microsatellite nodules adjacent to tumor

Risk Factors for Local Recurrence

Independent risk factors of local recurrence by metaanalysis of 5224 liver tumors treated by RFA from 95 series in the literature:

- tumor size > 3 cm (p< 0.001)
- percutaneous vs. surgical approach (p< 0.001)

Mulier et al. Ann Surg 2005

RFA for Large HCC > 5 cm

 Percutaneous RFA for HCC > 5 cm: Complete ablation rate < 50% (compared with 90% for HCC < 3 cm)

> Livraghi et al. Radiology 2000 Guglielmi et al. Hepatogastroenterology 2003

 Open RFA for HCC > 5 cm: Complete ablation rate 83% (vs. 96% for HCC < 3 cm)

Poon et al. Arch Surg 2004

Long-term Survival after RFA for HCC > 5 cm

3-year survival 73% vs. 52% 5-year survival 56% vs. 12%

P < 0.05

Potential Approaches to Reduce Recurrence after RFA for HCC > 3 cm

- Combination with transarterial chemoembolization
 - one more invasive procedure with potential serious complications
- Thermosensitive liposomes encapsulating cytotoxic drugs
 - a novel technology to deliver high concentrations of chemotherapy drugs to the tumor with lower systemic toxicity
 - simple intravenous injection prior to RFA procedure

Thermal Sensitive Liposomes

 Liposomal encapsulation can optimize and enhance the delivery of different cytotoxic agents with lower systemic toxicity and better drug cell internalization compared with free drug

(e.g. DOXIL - polyethylene glycolylated liposomes containing Doxorubicin)

 New generation of lyso-lipid heat-sensitive liposomes release drugs with hyperthermia and may further improve drug delivery to tumors

(e.g. ThermoDox)

Thermosensitive Liposomal Doxorubicin (ThermoDox)

ThermoDox is 100 nm, a Fraction of RBC

ThermoDox in Mice Tumor Study

Combining Thermodox with pulsed HIFU enhanced its delivery to tumor and its antitumor effects compared with Doxil

Thermodox started releasing doxorubicin at a temperature of 39°C. At a temperature of 42°C, release of doxorubicin at 2 min was ~ 50% and nearly 100% by 12 min

Dromi et al. Clin Cancer Res 2007

Mode of Action for ThermoDox

- Local tissue concentration ~ 10x that of standard free doxorubicin, achieving higher cancer cytotoxicity and reduced systemic toxicity
- Direct toxicity to tumor vasculature
- Synergistic effects:
- Cytotoxic effect of doxorubicin enhanced by heat (doxorubicin binding to tumor DNA)
- Doxorubicin reduces ablation threshold temperature enhanced lesion size

RF Ablation / ThermoDox Combination

Phase I Study at NCI (USA) and QMH (HK)

- Phase I, single dose, dose escalation study to evaluate tolerability of Thermodox in patients with liver tumors undergoing RFA
- Patients with primary or secondary liver cancer, 4 or fewer tumor nodules up to 7 cm, were enrolled following the dose escalation design
- Six ThermoDox dose levels were planned: 20, 30, 40, 50, 60 and 70 mg/m²
- Patients received a single dose of 30-min. IV infusion of ThermoDox starting 15 min. before percutaneous or surgical RFA
- Patients were monitored for safety up to 3 months, and contrast CT scan was performed at day 28 to assess treatment efficacy

Wood, et al. J Vasc Interv Radiol. 2012

Patient and Tumor Characteristics

- A total of 24 patients were treated (3, 6, 6, 6, 3 patients at doses of 20, 30, 40, 50 and 60 mg/m², respectively)
- Median age 58.5 years (range: 33 to 84), 17M / 7F
- Median tumor size 3.7 cm (range 1.7-6.5 cm), and totally 28 tumors treated
- Pathology: Hepatocellular carcinoma n = 9 Metastatic carcinoma n = 15 (Primary sites: adrenal, colorectal, esophageal, breast, cervix uteri, kidney, pancreas)

Adverse Events and MTD

- Common drug-related adverse events included:
 - alopecia (grade 1 or 2 only, 66.7%)
 - reversible grade 3/4 neutropenia (50%, dose-dependent)
- No treatment death
- No renal toxicity, congestive heart failure, reduced ventricular ejection fraction or hand-foot reaction
- The maximum tolerated dose (MTD) was determined as 50 mg/m² based on two dose-limiting toxicities (a grade 3 alanine aminotransferase increase and a grade 4 neutropenia) occurring at 60 mg/m² dose

Pharmacokinetics

- The concentration of doxorubicin peaked at 30 minutes and then decreased as doxorubicin is cleared (initial half-life 0.92 hr.)

- A simple approach of initiating RFA halfway into a 30 minute IV infusion of Thermodox captured 51% of the AUC₀- ∞ with RFA current on and 90% of the AUC₀- ∞ with the overall RFA time.

Tumor Control

- Totally 28 tumors were treated
- Three patients had local failure detected at 28 days posttreatment (12.5%)
- There was a statistically significant ThermoDox doseresponse relationship in time to tumor progression (P = 0.011)

Illustrative Case - HCC

5.7 cm HCC

Illustrative Case - Metastasis

Adrenal cortical carcinoma metastasis

Pre-treatment (a, arrow), 3 days (b), 4weeks (c), 11 weeks (d), and 20 weeks (e) post treatment

Phase III Multi-center Randomized Trial

1:1

Eligibility:

- non-resectable HCC
- no more than 4 lesions
- at least 1 lesion > 3cm and none > 7cm
- no previous treatment
- Child-Pugh A or B

Stratification

- lesion size: 3-5 vs >5-7 cm and RFA technique:
 - open surgical
 - laparoscopic or
 - percutaneous

R a n a 350 d o m i z e

End Points: Primary: PFS (Progression Free Survival)

Secondary: OS (Overall Survival), TTLR (time to local recurrence), Safety

 $\begin{array}{l} \label{eq:loss} \textbf{He} patocellular Carcinoma Study \\ of RFA and _hermoDox^{\texttt{®}} \end{array}$

Phase III HEAT Study Status

- 76 clinical sites in 11 countries/regions
- Completed enrollment of 700 by June, 2012
- Effiacy analysis expected in the end of 2012

Other On-going Trials of ThermoDox

- Phase II Study of ThermoDox in colorectal MLC patients
 2 arm, randomized, RFA +/- ThermoDox; 88 patients
- Phase II trial of combination of Thermodox with HIFU for HCC
- Phase I/II trial for chest wall recurrence of breast cancer
- Potential use in other cancers e.g. pancreatic cancer, bone cancer

Pre-treatment

Post-treatment

MRI Monitoring of Tumoral Drug Delivery with Thermosensitive Liposomes

- A multifunctional HaT liposome co-encapsulating Gd-DTPA (an MRI probe) and doxorubicin (DOX), which simultaneously releases and reports on drug delivery in a locally heated tumor
- The temperature-dependent release profiles of DOX from HaT were closely related to the change in the MR T(1) relaxation time, in which DOX was 100% released at 40-42 °C in 3 min, accompanied by a 60% reduction in T(1)
- DOX uptake in the tumor was quantitatively correlated with T(1) response (R(2) = 0.98), predominantly detected in the highly perfused tumor periphery
- The extent of T(1) relaxation enhancement in the heated tumor successfully predicted the antitumor efficacy

Tagami et al, Biomaterials 2011

- Thermosensitive liposome is a novel technology of heatactivated delivery of cancer drugs
- Encouraging results from phase I trial of Thermodox combined with RFA in liver cancer; on-going randomized phase III trial will evaluate the benefit of Thermodox in reducing tumor recurrence and increasing survival after RFA
- Potential use in other cancers with other encapsulated drugs in combination with heat

